• Title/Summary/Keyword: Multi-Mission Modular

Search Result 3, Processing Time 0.021 seconds

An Empirical Study on the Next Generation Installation Device for Application to Multi-Mission Modular Weapon Systems (다중임무 모듈형 무기체계 적용 차세대 설치 장치 실증 연구)

  • Byeong-Jun An
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.757-761
    • /
    • 2024
  • The need to acquire a multi-mission modular ship to carry out the mosaic warfare of modern warfare is increasing. In such a modular ship, not only domestic R&D equipment/systems but also an manned/unmanned complex system purchased overseas must be mounted together. In order to successfully design/construction a multi-mission modular prototype battle ship and turn it into timely power, it is necessary to apply a new technology so that it can be installed flexibly in a limited space and time. However, the existing welding installation method not only limits flexibility in design/construction due to safety problems, but also has an inherent problem that the cost and time required to correct defects and supplements are excessive. Therefore, this study introduces the current status of next-generation installation devices developed/applied in the advanced navy and the field demonstration results applied to battle ships to provide flexibility in this respect.

Comparison study of CPU processing load by I/O processing method through use case analysis (유즈케이스를 통해 분석해 본 I/O 처리방식에 따르는 CPU처리 부하 비교연구)

  • Kim, JaeYoung
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.57-64
    • /
    • 2019
  • Recently, avionics systems are being developed as integrated modular architecture applying the modular integration design of the functional unit to reduce maintenance costs and increase operating performance. Additionally, a partitioning operating system based on virtualization technology was used to process various mission control functions. In virtualization technology, the CPU processing load distribution is a key consideration. Especially, the uncertainty of the I/O processing time is a risk factor in the design of reliable avionics systems. In this paper, we examine the influence of the I/O processing method by comparing and analyzing the CPU processing load by the I/O processing method through use of case analysis and applying it to the example of spatial-temporal partitioning.

Design Technique and Application for Distributed Recovery Block Using the Partitioning Operating System Based on Multi-Core System (멀티코어 기반 파티셔닝 운영체제를 이용한 분산 복구 블록 설계 기법 및 응용)

  • Park, Hansol
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.357-365
    • /
    • 2015
  • Recently, embedded systems such as aircraft and automobilie, are developed as modular architecture instead of federated architecture because of SWaP(Size, Weight and Power) issues. In addition, partition operating system that support multiple logical node based on partition concept were recently appeared. Distributed recovery block is fault tolerance design scheme that applicable to mission critical real-time system to support real-time take over via real-time synchronization between participated nodes. Because of real-time synchronization, single-core based computer is not suitable for partition based distributed recovery block design scheme. Multi-core and AMP(Asymmetric Multi-Processing) based partition architecture is required to apply distributed recovery block design scheme. In this paper, we proposed design scheme of distributed recovery block on the multi-core based supervised-AMP architecture partition operating system. This paper implements flight control simulator for avionics to check feasibility of our design scheme.