• Title/Summary/Keyword: Multi-Layer Perceptron (MLP)

Search Result 227, Processing Time 0.023 seconds

Water Quality Forecasting of Chungju Lake Using Artificial Neural Network Algorithm (인공신경망 이론을 이용한 충주호의 수질예측)

  • 정효준;이소진;이홍근
    • Journal of Environmental Science International
    • /
    • v.11 no.3
    • /
    • pp.201-207
    • /
    • 2002
  • This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.

Analysis of Novelty Detection Properties of Autoassociative MLP (자기연상 다층퍼셉트론의 이상 탐지 성질 분석)

  • Lee, Hyoung-joo;Hwang, Byung-ho;Cho, Sungzoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.2
    • /
    • pp.147-161
    • /
    • 2002
  • In novelty detection, one attempts to discriminate abnormal patterns from normal ones. Novelty detection is quite difficult since, unlike usual two class classification problems, only normal patterns are available for training. Auto-Associative Multi-Layer Perceptron (AAMLP) has been shown to provide a good performance based upon the property that novel patterns usually have larger auto-associative errors. In this paper, we give a mathematical analysis of 2-layer AAMLP's output characteristics and empirical results of 2-layer and 4-layer AAMLPs. Various activation functions such as linear, saturated linear and sigmoid are compared. The 2-layer AAMLPs cannot identify non-linear boundaries while the 4-layer ones can. When the data distribution is multi-modal, then an ensemble of AAMLPs, each of which is trained with pre-clustered data is required. This paper contributes to understanding of AAMLP networks and leads to practical recommendations regarding its use.

A Study on the Synthesis of HMM and GA-MLP for EMG Signal Recognition (근전도 신호인식을 위한 HMM과 GA-MLP의 합성에 관한 연구)

  • Shin, C.K.;Lee, D.H.;Lee, S.M.;Kwon, J.W.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.199-202
    • /
    • 1996
  • In this paper, we suggested the combination of HMM(Hidden Markov Model) and MLP (Multi-Layer Perceptron) with GA(genetic algorithm) for a recognition of EMG signals. To describe EMG signal's dynamic properties, HMM algorithm was adapted and due to its outstanding abilities in static signal classification MLP was connected as a real processor. We also used GA( Genetic Algorithm) for improving MLP's learning rate. Experimental results showed that the suggested classifier gave higher EMG signal recognition rates with faster learning time than other one.

  • PDF

Speed-limit Sign Recognition Using Convolutional Neural Network Based on Random Forest (랜덤 포레스트 분류기 기반의 컨벌루션 뉴럴 네트워크를 이용한 속도제한 표지판 인식)

  • Lee, EunJu;Nam, Jae-Yeal;Ko, ByoungChul
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.938-949
    • /
    • 2015
  • In this paper, we propose a robust speed-limit sign recognition system which is durable to any sign changes caused by exterior damage or color contrast due to light direction. For recognition of speed-limit sign, we apply CNN which is showing an outstanding performance in pattern recognition field. However, original CNN uses multiple hidden layers to extract features and uses fully-connected method with MLP(Multi-layer perceptron) on the result. Therefore, the major demerit of conventional CNN is to require a long time for training and testing. In this paper, we apply randomly-connected classifier instead of fully-connected classifier by combining random forest with output of 2 layers of CNN. We prove that the recognition results of CNN with random forest show best performance than recognition results of CNN with SVM (Support Vector Machine) or MLP classifier when we use eight speed-limit signs of GTSRB (German Traffic Sign Recognition Benchmark).

The Basic Design of High Speed Neural Network Filter for Application of Machine Tools Controller (공작기계 컨트롤러용 고속 신경망 필터의 기초설계)

  • 김진선;신우철;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.125-130
    • /
    • 2003
  • This Paper describes a Nonlinear adoptive noise canceller using Neural Network for Machine Tools Controller System. Back-Propagation Learning Algorithm based MLP (Multi Layer Perceptron)is used an adaptive filters. In this Paper. it assume that the noise of primary input in the adaptive noise canceller is not the same characteristic as that of the reference input. Experimental results show that the neural network base noise canceller outperforms the linear noise canceller. Especially to make noise cancel close to realtime, Primary Input is divided by Unit and each divided pan is processed for very short time than all the processed data are unified to whole data.

  • PDF

Design and Performance Evaluation of a Neural Network based Adaptive Filter for Application of Digital Controller (디지털 제어기용 적응 신경망 필터의 설계 및 성능평가)

  • 김진선;신우철;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.345-351
    • /
    • 2004
  • This Paper describes a nonlinear adaptive noise filter using neural network for digital controller system. Back-Propagation Learning Algorithm based MLP (Multi Layer Perceptron)is used an adaptive filters. In this paper. it assume that the noise of primary input in the adaptive noise canceller is not the same characteristic as that of the reference input. Experimental reaults show that the neural network base noise canceller outperforms the linear noise canceller. Especially to make noise cancel close to realtime, Primary input is divided by unit and each divided part is processed for very short time than all the processed data are unified to whole data.

  • PDF

Scaling Up Face Masks Classification Using a Deep Neural Network and Classical Method Inspired Hybrid Technique

  • Kumar, Akhil;Kalia, Arvind;Verma, Kinshuk;Sharma, Akashdeep;Kaushal, Manisha;Kalia, Aayushi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3658-3679
    • /
    • 2022
  • Classification of persons wearing and not wearing face masks in images has emerged as a new computer vision problem during the COVID-19 pandemic. In order to address this problem and scale up the research in this domain, in this paper a hybrid technique by employing ResNet-101 and multi-layer perceptron (MLP) classifier has been proposed. The proposed technique is tested and validated on a self-created face masks classification dataset and a standard dataset. On self-created dataset, the proposed technique achieved a classification accuracy of 97.3%. To embrace the proposed technique, six other state-of-the-art CNN feature extractors with six other classical machine learning classifiers have been tested and compared with the proposed technique. The proposed technique achieved better classification accuracy and 1-6% higher precision, recall, and F1 score as compared to other tested deep feature extractors and machine learning classifiers.

Development of sound location visualization intelligent control system for using PM hearing impaired users (청각 장애인 PM 이용자를 위한 소리 위치 시각화 지능형 제어 시스템 개발)

  • Yong-Hyeon Jo;Jin Young Choi
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.105-114
    • /
    • 2022
  • This paper is presents an intelligent control system that visualizes the direction of arrival for hearing impaired using personal mobility, and aims to recognize and prevent dangerous situations caused by sound such as alarm sounds and crack sounds on roads. The position estimation method of sound source uses a machine learning classification model characterized by generalized correlated phase transformation based on time difference of arrival. In the experimental environment reproducing the road situations, four classification models learned after extracting learning data according to wind speeds 0km/h, 5.8km/h, 14.2km/h, and 26.4km/h were compared with grid search cross validation, and the Muti-Layer Perceptron(MLP) model with the best performance was applied as the optimal algorithm. When wind occurred, the proposed algorithm showed an average performance improvement of 7.6-11.5% compared to the previous studies.

Skin Color Detection Using Partially Connected Multi-layer Perceptron of Two Color Models (두 칼라 모델의 부분연결 다층 퍼셉트론을 사용한 피부색 검출)

  • Kim, Sung-Hoon;Lee, Hyon-Soo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.107-115
    • /
    • 2009
  • Skin color detection is used to classify input pixels into skin and non skin area, and it requires the classifier to have a high classification rate. In previous work, most classifiers used single color model for skin color detection. However the classification rate can be increased by using more than one color model due to the various characteristics of skin color distribution in different color models, and the MLP is also invested as a more efficient classifier with less parameters than other classifiers. But the input dimension and required parameters of MLP will be increased when using two color models in skin color detection, as a result, the increased parameters will cause the huge teaming time in MLP. In this paper, we propose a MLP based classifier with less parameters in two color models. The proposed partially connected MLP based on two color models can reduce the number of weights and improve the classification rate. Because the characteristic of different color model can be learned in different partial networks. As the experimental results, we obtained 91.8% classification rate when testing various images in RGB and CbCr models.

MLP Design Method Optimized for Hidden Neurons on FPGA (FPGA 상에서 은닉층 뉴런에 최적화된 MLP의 설계 방법)

  • Kyoung Dong-Wuk;Jung Kee-Chul
    • The KIPS Transactions:PartB
    • /
    • v.13B no.4 s.107
    • /
    • pp.429-438
    • /
    • 2006
  • Neural Networks(NNs) are applied for solving a wide variety of nonlinear problems in several areas, such as image processing, pattern recognition etc. Although NN can be simulated by using software, many potential NN applications required real-time processing. Thus they need to be implemented as hardware. The hardware implementation of multi-layer perceptrons(MLPs) in several kind of NNs usually uses a fixed-point arithmetic due to a simple logic operation and a shorter processing time compared to the floating-point arithmetic. However, the fixed-point arithmetic-based MLP has a drawback which is not able to apply the MLP software that use floating-point arithmetic. We propose a design method for MLPs which has the floating-point arithmetic-based fully-pipelining architecture. It has a processing speed that is proportional to the number of the hidden nodes. The number of input and output nodes of MLPs are generally constrained by given problems, but the number of hidden nodes can be optimized by user experiences. Thus our design method is using optimized number of hidden nodes in order to improve the processing speed, especially in field of a repeated processing such as image processing, pattern recognition, etc.