In this paper, we propose a table tennis posture classification system using a cooperative robot to develop a table tennis robot that can be trained like a real game. The most ideal table tennis robot would be a robot with a high joint driving speed and a high degree of freedom. Therefore, in this paper, we intend to use a cooperative robot with sufficient degrees of freedom to develop a robot that can be trained like a real game. However, cooperative robots have the disadvantage of slow joint driving speed. These shortcomings are expected to be overcome through quick recognition. Therefore, in this paper, we try to quickly classify the opponent's posture to overcome the slow joint driving speed. To this end, learning about dynamic postures was conducted using image data as input, and finally, three classification models were created and comparative experiments and evaluations were performed on the designated dynamic postures. In conclusion, comparative experimental data demonstrate the highest classification accuracy and fastest classification speed in classification models using MLP (Multi-Layer Perceptron), and thus demonstrate the validity of the proposed algorithm.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.1
/
pp.29-38
/
2023
Although the biosignal is the best way to represent the human condition, it is difficult to acquire the biosignal of a driver driving for detecting driver's condition. As one of the methods to overcome this limitation, this paper proposes a driving stress monitoring system based on information provided by OBD-II(on-board diagnostics version II). The driving information and EDA(Electrodermal activity) data are obtained through the OBD-II scanner and E4 wristband, respectively. EDA data is used as ground truth to distinguish whether driver is stressed or not. MLP(multi-layer perceptron) neural network is used as a model to detect driving stress and is trained using driving data for about a month. To evaluate the proposed system, we used about 1 hour of driving data and the accuracy is 92%.
Proceedings of the Korea Information Processing Society Conference
/
2021.05a
/
pp.293-296
/
2021
K-water에서는 다목적댐의 관리를 위해 실시간으로 댐수위, 하천 수위 및 강우량 등을 계측하고 있으며, 계측된 값들은 댐을 효과적으로 운영하는데 필요한 데이터로 활용되고 있다. 특히 댐수위 이상 데이터를 탐지하지 못한 채 그대로 사용할 경우 댐의 방류 시기와 방류량 등을 결정하는 중요한 의사결정을 그르칠 수 있으므로 이를 신속히 탐지하는 것이 매우 중요하다. 현재의 자동화된 이상 데이터 탐지방법 중 하나는 현재 데이터가 최댓값과 최솟값을 초과할 때, 다른 하나는 현재 데이터와 일정 시간 동안의 평균값 간의 차이가 관리자가 정한 특정 값을 벗어났을 때를 기준으로 삼고 있다. 전자는 상한과 하한의 초과 여부만 판단하므로 탐지가 쉬우나 정상범위 내에서 발생한 이상 데이터는 탐지가 불가하다. 후자는 관리자의 경험을 통해 판단 조건을 정하기 때문에 객관성이 결여되는 문제가 있다. 특히 방류와 강우가 복합적으로 댐수위에 영향을 미치는 홍수기에 관리자의 경험에 기초한 이상 데이터 판별은 신뢰성의 문제가 있을 수 있다. 따라서 본 연구에서는 기계학습을 최초로 적용하여 이상 데이터를 탐지하고자 하였다. 댐수위, 누적강우량 및 누적방류량 데이터와 댐수위데이터를 가공하여 생성한 댐수위차, 댐수위차평균, 댐수위평균 등 자질들의 다양한 조합을 만든 후 이를 Random Forest, SVM, AdaptiveBoost 및 다층퍼셉트론(MLP) 등과 같은 여러 가지 기계학습모델 등을 통해 이상 데이터를 판별하는 실험(분류)을 하였다. 실험결과 댐수위, 댐수위차, 댐수위-댐수위평균, 누적강우량, 누적방류량 및 댐수위차평균을 사용하였을 때 MLP에서 가장 우수한 성능을 보였다. 이 연구를 통해서 댐수위 이상 데이터를 기계학습의 분류기능을 통해 효과적으로 탐지할 수 있다는 것과 모델의 성능은 실험에 사용한 자질의 수뿐 아니라 자질의 종류에도 큰 영향을 받는다는 것을 알 수 있었다.
Jo, Bongjun;Choi, Wanmin;Kim, Youngdae;kim, Kisung;Kim, Jonggun
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.248-248
/
2020
토양수분은 증발산, 유출, 침투 등 물수지 요소들과 밀접한 연관이 있는 주요한 변수 중에 하나이다. 토양수분의 정도는 토양의 특성, 토지이용 형태, 기상 상태 등에 따라 공간적으로 상이하며, 특히 기상 상태에 따라 시간적 변동성을 보이고 있다. 기존 토양수분 측정은 토양시료 채취를 통한 실내 실험 측정과 측정 장비를 통한 현장 조사 방법이 있으나 시간적, 경제적 한계점이 있으며, 원격탐사 기법은 공간적으로 넓은 범위를 포함하지만 시간 해상도가 낮은 단점이 있다. 또한, 모델링을 통한 토양수분 예측 기술은 전문적인 지식이 요구되며, 복잡한 입력자료의 구축이 요구된다. 최근 머신러닝 기법은 수많은 자료 학습을 통해 사용자가 원하는 출력값을 도출하는데 널리 활용되고 있다. 이에 본 연구에서는 토양수분과 연관된 다양한 기상 인자들(강수량, 풍속, 습도 등)을 활용하여 머신러닝기법의 반복학습을 통한 토양수분의 예측 가능성을 분석하고자 한다. 이를 위해 시공간적으로 토양수분 실측 자료가 잘 구축되어 있는 청미천과 설마천 유역을 대상으로 머신러닝 기법을 적용하였다. 두 대상지에서 2008년~2012년 수문자료를 확보하였으며, 기상자료는 기상자료개방포털과 WAMIS를 통해 자료를 확보하였다. 토양수분 자료와 기상자료를 머신러닝 알고리즘을 통해 학습하고 2012년 기상 자료를 바탕으로 토양수분을 예측하였다. 사용되는 머신러닝 기법은 의사결정 나무(Decision Tree), 신경망(Multi Layer Perceptron, MLP), K-최근접 이웃(K-Nearest Neighbors, KNN), 서포트 벡터 머신(Support Vector Machine, SVM), 랜덤 포레스트(Random Forest), 그래디언트 부스팅 (Gradient Boosting)이다. 토양수분과 기상인자 간의 상관관계를 분석하기 위해 히트맵(Heat Map)을 이용하였다. 히트맵 분석 결과 토양수분의 시간적 변동은 다양한 기상 자료 중 강수량과 상대습도가 가장 큰 영향력을 보여주었다. 또한 다양한 기상 인자 기반 머신러닝 기법 적용 결과에서는 두 지역 모두 신경망(MLP) 기법을 제외한 모든 기법이 전반적으로 실측값과 유사한 형태를 보였으며 비교 그래프에서도 실측값과 예측 값이 유사한 추세를 나타냈다. 따라서 상관관계있는 과거 기상자료를 통해 머신러닝 기법 기반 토양수분의 시간적 변동 예측이 가능할 것으로 판단된다.
The pandemic of COVID-19 further promoted the imbalance in the volume of imports and exports among countries using containers, which worsened the shortage of empty containers. Since it is important to secure as many empty containers as the appropriate demand for stable and efficient port operation, measures to predict demand for empty containers using various techniques have been studied so far. However, it was based on long-term forecasts on a monthly or annual basis rather than demand forecasts that could be used directly by ports and shipping companies. In this study, a daily and weekly prediction method using an actual artificial neural network is presented. In details, the demand forecasting model has been developed using multi-layer perceptron and multiple linear regression model. In order to overcome the limitation from the lack of data, it was manipulated considering the business process between the loaded container and empty container, which the fully-loaded container is converted to the empty container. From the result of numerical experiment, it has been developed the practically applicable forecasting model, even though it could not show the perfect accuracy.
Structural design has an imperative role in deciding the failure possibility of a Reinforced Concrete (RC) structure. Recent research works achieved the goal of predicting the structural failure of the RC structure with the assistance of machine learning techniques. Previously, the Artificial Neural Network (ANN) has been trained supported by Particle Swarm Optimization (PSO) to classify RC structures with reasonable accuracy. Though, keeping in mind the sensitivity in predicting the structural failure, more accurate models are still absent in the context of Machine Learning. Since the efficiency of multi-objective optimization over single objective optimization techniques is well established. Thus, the motivation of the current work is to employ a Multi-objective Genetic Algorithm (MOGA) to train the Neural Network (NN) based model. In the present work, the NN has been trained with MOGA to minimize the Root Mean Squared Error (RMSE) and Maximum Error (ME) toward optimizing the weight vector of the NN. The model has been tested by using a dataset consisting of 150 RC structure buildings. The proposed NN-MOGA based model has been compared with Multi-layer perceptron-feed-forward network (MLP-FFN) and NN-PSO based models in terms of several performance metrics. Experimental results suggested that the NN-MOGA has outperformed other existing well known classifiers with a reasonable improvement over them. Meanwhile, the proposed NN-MOGA achieved the superior accuracy of 93.33% and F-measure of 94.44%, which is superior to the other classifiers in the present study.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.2
/
pp.236-244
/
2005
In this study, we introduce a new topology of Fuzzy Polynomial Neural Networks(FPNN) that is based on fuzzy relation and evolutionally optimized Multi-Layer Perceptron, discuss a comprehensive design methodology and carry out a series of numeric experiments. The construction of the evolutionally optimized FPNN(EFPNN) exploits fundamental technologies of Computational Intelligence. The architecture of the resulting EFPNN results from a synergistic usage of the genetic optimization-driven hybrid system generated by combining rule-based Fuzzy Neural Networks(FNN) with polynomial neural networks(PNN). FNN contributes to the formation of the premise part of the overall rule-based structure of the EFPNN. The consequence part of the EFPNN is designed using PNN. As the consequence part of the EFPNN, the development of the genetically optimized PNN(gPNN) dwells on two general optimization mechanism: the structural optimization is realized via GAs whereas in case of the parametric optimization we proceed with a standard least square method-based learning. To evaluate the performance of the EFPNN, the models are experimented with the use of several representative numerical examples. A comparative analysis shows that the proposed EFPNN are models with higher accuracy as well as more superb predictive capability than other intelligent models presented previously.
The Journal of the Korea institute of electronic communication sciences
/
v.15
no.3
/
pp.513-520
/
2020
Recently, the development of a vision inspection system using machine learning has become more active. This study seeks to develop a defect inspection model using machine learning. Defect detection problems for images correspond to classification problems, which are the method of supervised learning in machine learning. In this study, defect detection models are developed based on algorithms that automatically extract features and algorithms that do not extract features. One-dimensional CNN and two-dimensional CNN are used as algorithms for automatic extraction of features, and MLP and SVM are used as algorithms for non-extracting features. A defect detection model is developed based on four models and their accuracy and AUC compare based on AUC. Although image classification is common in the development of models using CNN, high accuracy and AUC is achieved when developing SVM models by converting pixels from images into RGB values in this study.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.20
no.11
/
pp.1009-1017
/
2010
As rotating machines play an important role in industrial applications such as aeronautical, naval and automotive industries, many researchers have developed various condition monitoring system and fault diagnosis system by applying various techniques such as signal processing and pattern recognition. Recently, fault diagnosis systems using artificial neural network have been proposed. For effective fault diagnosis, this paper used MLP(multi-layer perceptron) network which is widely used in pattern classification. Since using obtained signals without preprocessing as inputs of neural network can decrease performance of fault classification, it is very important to extract significant features of captured signals and to apply suitable features into diagnosis system according to the kinds of obtained signals. Therefore, this paper proposes the decision method of the proper feature vectors about each fault signal for neural-network-based fault diagnosis system. We applied LPC coefficients, maximum magnitudes of each spectral section in FFT and RMS(root mean square) and variance of wavelet coefficients as feature vectors and selected appropriate feature vectors as comparing error ratios of fault diagnosis for sound, vibration and current fault signals. From experiment results, LPC coefficients and maximum magnitudes of each spectral section showed 100 % diagnosis ratios for each fault and the method using wavelet coefficients had noise-robust characteristic.
This research proposes a system for speaker independent Korean continuous speech recognition with 247 DDD area names using keyword spotting technique. The applied recognition algorithm is the Dynamic Programming Neural Network(DPNN) based on the integration of DP and multi-layer perceptron as model that solves time axis distortion and spectral pattern variation in the speech. To improve performance, we classify word model into keyword model and non-keyword model. We make an experiment on postprocessing procedure for the evaluation of system performance. Experiment results are as follows. The recognition rate of the isolated word is 93.45% in speaker dependent case. The recognition rate of the isolated word is 84.05% in speaker independent case. The recognition rate of simple dialogic sentence in keyword spotting experiment is 77.34% as speaker dependent, and 70.63% as speaker independent.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.