• Title/Summary/Keyword: Multi-Fidelity Modeling

Search Result 15, Processing Time 0.026 seconds

Multi-fidelity Modeling and Simulation Methodology to Enhance Simulation Performance of Engineering-level Defense Model (공학급 국방 모델의 시뮬레이션 성능 향상을 위한 다중 충실도 M&S 기법 연구)

  • Choi, Seon Han;Seo, Kyung-Min;Kwon, Se Jung;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.67-82
    • /
    • 2013
  • This paper presents multi-fidelity modeling and simulation (M&S) methodology to enhance simulation performance of engineering-level defense models. In this approach, a set of models with varying degrees of fidelity is exercised to reduce computational expense maintaining a similar level of system effectiveness. For multi-fidelity M&S principles, this paper defines model fidelity from two perspectives (i.e., model behavior and execution), and suggests the Fidelity Change Point (FCP) to specify the fidelity conversion. With these concepts, this paper centers on three ideas: 1) two models' structure which are the Behavioral-Fidelity Interchangeable Model (B-FIM) and the Executional-Fidelity Interchangeable Model (E-FIM), 2) modeling formalism, and 3) a simulation algorithm to support them. From an abstract case study regarding a target tracking scenario with the utilization of the proposed method, we can gain interesting experimental results regarding the enhancement of simulation performance. Finally, we expect that this work will serve various M&S-based analysis areas for enhancing simulation performance.

Investigation on the nonintrusive multi-fidelity reduced-order modeling for PWR rod bundles

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Chu, Tianhui
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1825-1834
    • /
    • 2022
  • Performing high-fidelity computational fluid dynamics (HF-CFD) to predict the flow and heat transfer state of the coolant in the reactor core is expensive, especially in scenarios that require extensive parameter search, such as uncertainty analysis and design optimization. This work investigated the performance of utilizing a multi-fidelity reduced-order model (MF-ROM) in PWR rod bundles simulation. Firstly, basis vectors and basis vector coefficients of high-fidelity and low-fidelity CFD results are extracted separately by the proper orthogonal decomposition (POD) approach. Secondly, a surrogate model is trained to map the relationship between the extracted coefficients from different fidelity results. In the prediction stage, the coefficients of the low-fidelity data under the new operating conditions are extracted by using the obtained POD basis vectors. Then, the trained surrogate model uses the low-fidelity coefficients to regress the high-fidelity coefficients. The predicted high-fidelity data is reconstructed from the product of extracted basis vectors and the regression coefficients. The effectiveness of the MF-ROM is evaluated on a flow and heat transfer problem in PWR fuel rod bundles. Two data-driven algorithms, the Kriging and artificial neural network (ANN), are trained as surrogate models for the MF-ROM to reconstruct the complex flow and heat transfer field downstream of the mixing vanes. The results show good agreements between the data reconstructed with the trained MF-ROM and the high-fidelity CFD simulation result, while the former only requires to taken the computational burden of low-fidelity simulation. The results also show that the performance of the ANN model is slightly better than the Kriging model when using a high number of POD basis vectors for regression. Moreover, the result presented in this paper demonstrates the suitability of the proposed MF-ROM for high-fidelity fixed value initialization to accelerate complex simulation.

Feasibility Study of Hierarchical Kriging Model in the Design Optimization Process (계층적 크리깅 모델을 이용한 설계 최적화 기법의 유용성 검증)

  • Ha, Honggeun;Oh, Sejong;Yee, Kwanjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.2
    • /
    • pp.108-118
    • /
    • 2014
  • On the optimization design problem using surrogate model, it requires considerable number of sampling points to construct a surrogate model which retains the accuracy. As an alternative to reduce construction cost of the surrogate model, Variable-Fidelity Modeling(VFM) technique, where correct high fidelity model based on the low fidelity surrogate model is introduced. In this study, hierarchical kriging model for variable-fidelity surrogate modeling is used and an optimization framework with multi-objective genetic algorithm(MOGA) is presented. To prove the feasibility of this framework, airfoil design optimization process is performed for the transonic region. The parameters of PARSEC are used to design variables and the optimization process is performed in case of varying number of grid and varying fidelity. The results showed that pareto front of all variable-fidelity models are similar with its single-level of fidelity model and calculation time is considerably reduced. Based on computational results, it is shown that VFM is a more efficient way and has an accuracy as high as that single-level of fidelity model optimization.

Multi-fidelity uncertainty quantification of high Reynolds number turbulent flow around a rectangular 5:1 Cylinder

  • Sakuma, Mayu;Pepper, Nick;Warnakulasuriya, Suneth;Montomoli, Francesco;Wuch-ner, Roland;Bletzinger, Kai-Uwe
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • In this work a multi-fidelity non-intrusive polynomial chaos (MF-NIPC) has been applied to a structural wind engineering problem in architectural design for the first time. In architectural design it is important to design structures that are safe in a range of wind directions and speeds. For this reason, the computational models used to design buildings and bridges must account for the uncertainties associated with the interaction between the structure and wind. In order to use the numerical simulations for the design, the numerical models must be validated by experi-mental data, and uncertainties contained in the experiments should also be taken into account. Uncertainty Quantifi-cation has been increasingly used for CFD simulations to consider such uncertainties. Typically, CFD simulations are computationally expensive, motivating the increased interest in multi-fidelity methods due to their ability to lev-erage limited data sets of high-fidelity data with evaluations of more computationally inexpensive models. Previous-ly, the multi-fidelity framework has been applied to CFD simulations for the purposes of optimization, rather than for the statistical assessment of candidate design. In this paper MF-NIPC method is applied to flow around a rectan-gular 5:1 cylinder, which has been thoroughly investigated for architectural design. The purpose of UQ is validation of numerical simulation results with experimental data, therefore the radius of curvature of the rectangular cylinder corners and the angle of attack are considered to be random variables, which are known to contain uncertainties when wind tunnel tests are carried out. Computational Fluid Dynamics (CFD) simulations are solved by a solver that employs the Finite Element Method (FEM) for two turbulence modeling approaches of the incompressible Navier-Stokes equations: Unsteady Reynolds Averaged Navier Stokes (URANS) and the Large Eddy simulation (LES). The results of the uncertainty analysis with CFD are compared to experimental data in terms of time-averaged pressure coefficients and bulk parameters. In addition, the accuracy and efficiency of the multi-fidelity framework is demonstrated through a comparison with the results of the high-fidelity model.

Multiscale Finite Element Analysis of Needle-Punched C/SiC Composites through Subcell Modeling (서브셀 모델링을 통한 니들 펀치 C/SiC 복합재료의 멀티스케일 유한요소해석)

  • Lim, Hyoung Jun;Choi, Ho-Il;Lee, Min-Jung;Yun, Gun Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • In this paper, a multi-scale finite element (FE) modeling methodology for three-dimensional (3D) needle-punched (NP) C/SiC with a complex microstructure is presented. The variations of the material properties induced by the needle-punching process and complex geometrical features could pose challenges when estimating the material behavior. For considering these features of composites, a 3D microscopic FE approach is introduced based on micro-CT technology to produce a 3D high fidelity FE model. The image processing techniques of micro-CT are utilized to generate discrete-gray images and reconstruct the high fidelity model. Furthermore, a subcell modeling technique is developed for the 3D NP C/SiC based on the high fidelity FE model to expand to the macro-scale structural problem. A numerical homogenization approach under periodic boundary conditions (PBCs) is employed to estimate the equivalent behavior of the high fidelity model and effective properties of subcell components, considering geometry continuity effects. For verification, proposed models compare excellently with experimental results for the mechanical behavior of tensile, shear, and bending under static loading conditions.

Contact Pressure Analysis of a Windshield Wiperblade (와이퍼 블레이드의 누름압 해석)

  • Lee, Byoung-Soo;Shin, Jin-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.51-57
    • /
    • 2006
  • The contact pressure distribution between a rubber wiper blade and a glass windshield is a major factor for wiping performance. A modeling and simulation method has been developed to forecast the contact pressure distribution on a wiper blade. For modeling multi-body dynamics of an wiper linkage system and flexible nature of wiper blade, ADAMS and ADAMS/flex are employed. A simulation study has been also conducted to obtain contact pressure distribution. Comparison between simulation and measurement is provided to ensure fidelity of the model and the simulation method.

Multi-fidelity Data-fusion for Improving Strain accuracy using Optical Fiber Sensors (이종 광섬유 센서 데이터 융합을 통한 변형률 정확도 향상 기법)

  • Park, Young-Soo;Jin, Seung-Seop;Yoo, Chul-Hwan;Kim, Sungtae;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.547-553
    • /
    • 2020
  • As aging infrastructures increase along with time, the efficient maintenance becomes more significant and accurate responses from the sensors are pre-requisite. Among various responses, strain is commonly used to detect damage such as crack and fatigue. Optical fiber sensor is one of the promising sensing techniques to measure strains with high-durability, immunity for electrical noise, long transmission distance. Fiber Bragg Grating (FBG) is a point sensor to measure the strain based on reflected signals from the grating, while Brillouin Optic Correlation Domain Analysis (BOCDA) is a distributed sensor to measure the strain along with the optical fiber based on scattering signals. Although the FBG provides the signal with high accuracy and reproducibility, the number of sensing points is limited. On the other hand, the BOCDA can measure a quasi-continuous strain along with the optical fiber. However, the measured signals from BOCDA have low accuracy and reproducibility. This paper proposed a multi-fidelity data-fusion method based on Gaussian Process Regression to improve the fidelity of the strain distribution by fusing the advantages of both systems. The proposed method was evaluated by laboratory test. The result shows that the proposed method is promising to improve the fidelity of the strain.

Aerodynamic Shape Design Method for Wing Planform Using Metamodel (근사모델을 이용한 날개 평면형상 공력형상설계 방법)

  • Bae, Hyogil;Jeong, Sora
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.4
    • /
    • pp.18-23
    • /
    • 2014
  • In preliminary design phase, the wing geometry of the civil aircraft was determined using the empirical equation and historical data. To make wing geometry more aerodynamically efficient, an aerodynamic shape optimization was conducted. For this purpose the parametric modeling, high fidelity CFD analysis and metamodel-based optimal design technique were adopted. The parametric modeling got the design process to achieve the improvement by generating the configuration outputs easily for the major design variables. The optimal design equations were formularized as the type of the multi-objective functions considering low/high speed and lift/drag coefficient. The optimal solution was explored with the help of the kriging metamodel and the desirability function, therefore the optimal wing planform was sought to be excellent at both low and high speed region. Additionally the optimal wing planform was validated that it was excellent not only at the specific AOA, but also all over the range of AOA.

MODELING OF DIRECT INJECTION DIESEL ENGINE EMISSIONS FOR A QUASI-DIMENSIONAL MULTI-ZONE SPRAY MODEL

  • Jung, D.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.165-172
    • /
    • 2004
  • Phenomenological models for direct injection diesel engine emissions including NO, soot, and HC were implemented into a full engine cycle simulation and validated with experimental data obtained from representative heavy-duty DI diesel engines. The cycle simulation developed earlier by Jung and Assanis (2001) features a quasi-dimensional, multi-zone, spray combustion model to account for transient spray evolution, fuel-air mixing, ignition and combustion. In this study, additional models for HC emissions were newly implemented and the models for NO, soot, and HC emissions were validated against experimental data. It is shown that the models can predict the emissions with reasonable accuracy. However, additional effort may be required to enhance the fidelity of models across a wide range of operating conditions and engine types.

On the Effect of Air-Simulated Side-Jets on the Aerodynamic Characteristics of a Missile by Multi-Fidelity Modeling (다충실도 모형화를 통한 공기로 모사된 측방제트가 유도무기의 공력특성에 미치는 영향 연구)

  • Kang, Shinseong;Kang, Dayoung;Lee, Kyunghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.95-106
    • /
    • 2021
  • Side-jets enable the immediate maneuver of a missile compared to control surfaces; however, they may cause adverse effects on aerodynamic coefficients, for they interfere with freestream. To find out the impact of side-jets on aerodynamic coefficients, we simulate side-jets as air gas and utilize multi-fidelity models to evaluate differences between aerodynamic coefficients obtained with and without side-jets. We computed differences in aerodynamic coefficients to investigate side-jet effects for the changes of a Mach number, a bank angle, and an angle of attack. As a result, asymmetrically developed side-jets affect the longitudinal force and moment coefficients, and the lateral force and moment coefficients drastically change in-between -30 and 30 degrees of bank angles. In contrast, side-jets hardly influence the axial force coefficients. As for the axial moment coefficient, we could not determine the side-jet effect due to a lack of aerodynamic coefficient samples in the Mach number. All in all, we confirm that side-jets lead to the change of a missile attitude as they considerably vary the longitudinal and lateral aerodynamic coefficients.