• 제목/요약/키워드: Multi-Feature Decision-Making

검색결과 27건 처리시간 0.03초

데이터마이닝 방법을 응용한 휴리스틱 알고리즘 개발 (Development of Heuristic Algorithm Using Data-mining Method)

  • 김판수
    • 산업경영시스템학회지
    • /
    • 제28권4호
    • /
    • pp.94-101
    • /
    • 2005
  • This paper presents a data-mining aided heuristic algorithm development. The developed algorithm includes three steps. The steps are a uniform selection, development of feature functions and clustering, and a decision tree making. The developed algorithm is employed in designing an optimal multi-station fixture layout. The objective is to minimize the sensitivity function subject to geometric constraints. Its benefit is presented by a comparison with currently available optimization methods.

Quality Driven Approach for Product Line Architecture Customization in Patient Navigation Program Software Product Line

  • Ashari, Afifah M.;Abd Halim, Shahliza;Jawawi, Dayang N.A.;Suvelayutnan, Ushananthiny;Isa, Mohd Adham
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2455-2475
    • /
    • 2021
  • Patient Navigation Program (PNP) is considered as an important implementation of health care systems that can assist in patient's treatment. Due to the feasibility of PNP implementation, a systematic reuse is needed for a wide adoption of PNP computerized system. SPL is one of the promising systematic reuse approaches for creating a reusable architecture to enabled reuse in several similar applications of PNP systems which has its own variations with other applications. However, stakeholder decision making which result from the imprecise, uncertain, and subjective nature of architecture selection based on quality attributes (QA) further hinders the development of the product line architecture. Therefore, this study aims to propose a quality-driven approach using Multi-Criteria Decision Analysis (MCDA) techniques for Software Product Line Architecture (SPLA) to have an objective selection based on the QA of stakeholders in the domain of PNP. There are two steps proposed to this approach. First, a clear representation of quality is proposed by extending feature model (FM) with QA feature to determine the QA in the early phase of architecture selection. Second, MCDA techniques were applied for architecture selection based on objective preference for certain QA in the domain of PNP. The result of the proposed approach is the implementation of the PNP system with SPLA that had been selected using MCDA techniques. Evaluation for the approach is done by checking the approach's applicability in a case study and stakeholder validation. Evaluation on ease of use and usefulness of the approach with selected stakeholders have shown positive responses. The evaluation results proved that the proposed approach assisted in the implementation of PNP systems.

다기준 의사결정기반 고속도로 공사구간 VSL전략에 관한 연구 (A Study on Variable Speed Limit Strategies in Freeway Work Zone Using Multi-Criteria Decision Making Process)

  • 박준영;오철;장명순
    • 대한교통학회지
    • /
    • 제31권5호
    • /
    • pp.3-15
    • /
    • 2013
  • 본 연구에서는 고속도로 공사구간에 이동이 가능한 PVMS(Portable Variable Message Sign)를 일정 간격으로 설치하여 VSL을 구현하는 교통류 제어전략을 구성하여 공사구간에 어떠한 영향을 미치는지 파악하고자 하였다. 다기준 의사결정 기법 중 하나인 AHP기법 및 다기준 가치함수를 이용하여 교통소통, 교통안전, 환경을 대표하는 척도들을 동시에 고려할 수 있는 평가 방법론을 정립하였으며, VSL전략의 도입 전 후 개선효과를 도출하고 실시간으로 수집되는 교통량 및 중차량 혼입율을 고려한 최적 VSL전략 대안선정을 연구의 목표로 하였다. 개발된 평가 방법론을 통해 시뮬레이션 결과를 분석하였으며, 결과의 통계적 유의성 검정을 위해 분산분석을 수행하였다. 분석결과, VSL 대안 2(PVMS 400m간격)가 6개의 Case에서, VSL 대안 1(PVMS 200m간격)이 5개의 Case에서, VSL 대안 4(PVMS 800m간격)는 1개의 Case에서 최적 대안으로 도출되었다. VSL 대안 3(PVMS 600m간격)는 모든 Case에서 최적 대안으로 선택되지 않았으며 4개 Case에서 가장 안 좋은 대안으로 나타났다. 이는 VSL전략이 항상 개선된 효과를 보이지 않는 것을 의미하며 교통상황별로 적정 대안의 도입이 필요하다는 것을 나타낸다. 본 연구에서 시도된 AHP기법을 이용하여 여러 효과척도를 복합적으로 고려한 교통류관리전략 평가방법은 향후 다목적 의사결정방법의 교통류관리전략에 적용 시 하나의 예시가 될 수 있을 것으로 기대되며, 연구에서 제안하는 PVMS를 이용한 공사구간 VSL전략은 교통정보센터에서 실시간으로 수집되는 데이터를 통해 교통류 관리를 위한 운영 및 제어방안에 활용될 것으로 기대된다.

신경망 분류기와 선형트리 분류기에 의한 영상인식의 비교연구 (A Comparative Study of Image Recognition by Neural Network Classifier and Linear Tree Classifier)

  • Young Tae Park
    • 전자공학회논문지B
    • /
    • 제31B권5호
    • /
    • pp.141-148
    • /
    • 1994
  • Both the neural network classifier utilizing multi-layer perceptron and the linear tree classifier composed of hierarchically structured linear discriminating functions can form arbitrarily complex decision boundaries in the feature space and have very similar decision making processes. In this paper, a new method for automatically choosing the number of neurons in the hidden layers and for initalzing the connection weights between the layres and its supporting theory are presented by mapping the sequential structure of the linear tree classifier to the parallel structure of the neural networks having one or two hidden layers. Experimental results on the real data obtained from the military ship images show that this method is effective, and that three exists no siginificant difference in the classification acuracy of both classifiers.

  • PDF

A Multimodal Emotion Recognition Using the Facial Image and Speech Signal

  • Go, Hyoun-Joo;Kim, Yong-Tae;Chun, Myung-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.1-6
    • /
    • 2005
  • In this paper, we propose an emotion recognition method using the facial images and speech signals. Six basic emotions including happiness, sadness, anger, surprise, fear and dislike are investigated. Facia] expression recognition is performed by using the multi-resolution analysis based on the discrete wavelet. Here, we obtain the feature vectors through the ICA(Independent Component Analysis). On the other hand, the emotion recognition from the speech signal method has a structure of performing the recognition algorithm independently for each wavelet subband and the final recognition is obtained from the multi-decision making scheme. After merging the facial and speech emotion recognition results, we obtained better performance than previous ones.

Fuzzy AHP를 활용한 스마트폰 선택 및 이용 평가요인에 관한 연구 (A Study of Factors for Evaluating Smartphone Selection and Use using Fuzzy AHP)

  • 황현석;이상훈;김수연
    • 한국산업정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.107-117
    • /
    • 2011
  • 스마트폰은 기존의 피처폰보다 뛰어난 컴퓨팅 성능과 우수한 네트워크 연결성 등의 장점으로 그 사용이 확대되고 있다. 스마트폰 시장의 성장에 따라 수많은 제품들이 출시되고 있으며 사람들은 여러 가지 기준을 통하여 자신에게 적합한 제품을 선택한다. 스마트폰 관련 연구는 최근 점차 늘어나고 있으나 스마트폰의 평가에 관한 연구는 아직 부족한 실정이다. 본 논문은 스마트폰 선택 및 사용 시에 중요하게 고려되는 요인들을 도출하고 요인들 간의 상대적인 중요도를 파악하기 위해 수행되었다. 먼저 문헌조사와 표적집단(focus group) 인터뷰를 통하여 스마트폰의 선택 및 이용에 영향을 미치는 평가요인들을 도출하고, 도출된 평가요인들을 각각 쌍대 비교하여 각 요인에 대한 상대적 중요도를 산출하였다. 응답이 갖는 모호함을 해결하기 위해 퍼지 계층분석과정(Fuzzy AHP: Fuzzy Analytic Hierarchy Process) 기법을 이용하였으며 응답자 중 스마트폰 사용자와 비사용자 집단을 구분하여 그 중요도의 차이를 비교 분석하고, 분석 결과에 따른 실무적 의의를 기술하였다.

Multi-objective structural optimization of spatial steel frames with column orientation and bracing system as design variables

  • Claudio H. B. de Resende;Luiz F. Martha;Afonso C. C. Lemonge;Patricia H. Hallak;Jose P. G. Carvalho;Julia C. Motta
    • Advances in Computational Design
    • /
    • 제8권4호
    • /
    • pp.327-351
    • /
    • 2023
  • This article explores how multi-objective optimization techniques can be used to design cost-effective and structurally optimal spatial steel structures, highlighting that optimizing performance can be as important as minimizing costs in real-world engineering problems. The study includes the minimization of maximum horizontal displacement, the maximization of the first natural frequency of vibration, the maximization of the critical load factor concerning the first global buckling mode of the structure, and weight minimization as the objectives. Additionally, it outlines a systematic approach to selecting the best design by employing four different evolutionary algorithms based on differential evolution and a multi-criteria decision-making methodology. The paper's contribution lies in its comprehensive consideration of multiple conflicting objectives and its novel approach to simultaneous consideration of bracing system, column orientation, and commercial profiles as design variables.

얼굴표정과 음성을 이용한 감정인식 (An Emotion Recognition Method using Facial Expression and Speech Signal)

  • 고현주;이대종;전명근
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권6호
    • /
    • pp.799-807
    • /
    • 2004
  • 본 논문에서는 사람의 얼굴표정과 음성 속에 담긴 6개의 기본감정(기쁨, 슬픔, 화남, 놀람, 혐오, 공포)에 대한 특징을 추출하고 인식하고자 한다. 이를 위해 얼굴표정을 이용한 감정인식에서는 이산 웨이블렛 기반 다해상도 분석을 이용하여 선형판별분석기법으로 특징을 추출하고 최소 거리 분류 방법을 이용하여 감정을 인식한다. 음성에서의 감정인식은 웨이블렛 필터뱅크를 이용하여 독립적인 감정을 확인한 후 다중의사 결정 기법에 외해 감정인식을 한다. 최종적으로 얼굴 표정에서의 감정인식과 음성에서의 감정인식을 융합하는 단계로 퍼지 소속함수를 이용하며, 각 감정에 대하여 소속도로 표현된 매칭 감은 얼굴에서의 감정과 음성에서의 감정별로 더하고 그중 가장 큰 값을 인식 대상의 감정으로 선정한다.

위성영상을 활용한 실시간 재난정보 처리 기법: 재난 탐지, 매핑, 및 관리 (Early Disaster Damage Assessment using Remotely Sensing Imagery: Damage Detection, Mapping and Estimation)

  • 정명희
    • 전자공학회논문지CI
    • /
    • 제49권2호
    • /
    • pp.90-95
    • /
    • 2012
  • 위성영상은 광범위한 지역에 걸쳐 실시간으로 정확한 지표 상태에 대한 정보를 수집할 수 있어 재난재해관리에도 효율적 수단으로 사용되고 있다. 특히 고해상도 영상은 1m급 이하 지표 물체를 탐지할 수 있어 도심지역 정보 획득에 매우 유용하다. 본 논문에는 재난 발생 시 고해상도 위성영상으로부터 변화탐지 기법을 사용하여 피해를 탐지하고 피해정보를 추출하는 방법론이 제안되었다. 사용된 영상분석기법은 텍스쳐 정보를 이용하여 시간적 변화를 탐지하는 기법으로 특징 추출과 변화탐지 단계로 구성되어있다. 특징 추출 단계에서는 wavelet과 GLCM을 이용하여 텍스쳐가 추출되었고 변화탐지 단계에서는 영역간 텍스쳐의 상관관계를 이용한 분류기법이 사용되었다. 제안된 방법은 고해상도 위성영상을 사용하여 지진피해지역을 탐지하는 예에 적용되어 테스트 되었다.

다분류 SVM을 이용한 DEA기반 벤처기업 효율성등급 예측모형 (The Prediction of DEA based Efficiency Rating for Venture Business Using Multi-class SVM)

  • 박지영;홍태호
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.139-155
    • /
    • 2009
  • For the last few decades, many studies have tried to explore and unveil venture companies' success factors and unique features in order to identify the sources of such companies' competitive advantages over their rivals. Such venture companies have shown tendency to give high returns for investors generally making the best use of information technology. For this reason, many venture companies are keen on attracting avid investors' attention. Investors generally make their investment decisions by carefully examining the evaluation criteria of the alternatives. To them, credit rating information provided by international rating agencies, such as Standard and Poor's, Moody's and Fitch is crucial source as to such pivotal concerns as companies stability, growth, and risk status. But these types of information are generated only for the companies issuing corporate bonds, not venture companies. Therefore, this study proposes a method for evaluating venture businesses by presenting our recent empirical results using financial data of Korean venture companies listed on KOSDAQ in Korea exchange. In addition, this paper used multi-class SVM for the prediction of DEA-based efficiency rating for venture businesses, which was derived from our proposed method. Our approach sheds light on ways to locate efficient companies generating high level of profits. Above all, in determining effective ways to evaluate a venture firm's efficiency, it is important to understand the major contributing factors of such efficiency. Therefore, this paper is constructed on the basis of following two ideas to classify which companies are more efficient venture companies: i) making DEA based multi-class rating for sample companies and ii) developing multi-class SVM-based efficiency prediction model for classifying all companies. First, the Data Envelopment Analysis(DEA) is a non-parametric multiple input-output efficiency technique that measures the relative efficiency of decision making units(DMUs) using a linear programming based model. It is non-parametric because it requires no assumption on the shape or parameters of the underlying production function. DEA has been already widely applied for evaluating the relative efficiency of DMUs. Recently, a number of DEA based studies have evaluated the efficiency of various types of companies, such as internet companies and venture companies. It has been also applied to corporate credit ratings. In this study we utilized DEA for sorting venture companies by efficiency based ratings. The Support Vector Machine(SVM), on the other hand, is a popular technique for solving data classification problems. In this paper, we employed SVM to classify the efficiency ratings in IT venture companies according to the results of DEA. The SVM method was first developed by Vapnik (1995). As one of many machine learning techniques, SVM is based on a statistical theory. Thus far, the method has shown good performances especially in generalizing capacity in classification tasks, resulting in numerous applications in many areas of business, SVM is basically the algorithm that finds the maximum margin hyperplane, which is the maximum separation between classes. According to this method, support vectors are the closest to the maximum margin hyperplane. If it is impossible to classify, we can use the kernel function. In the case of nonlinear class boundaries, we can transform the inputs into a high-dimensional feature space, This is the original input space and is mapped into a high-dimensional dot-product space. Many studies applied SVM to the prediction of bankruptcy, the forecast a financial time series, and the problem of estimating credit rating, In this study we employed SVM for developing data mining-based efficiency prediction model. We used the Gaussian radial function as a kernel function of SVM. In multi-class SVM, we adopted one-against-one approach between binary classification method and two all-together methods, proposed by Weston and Watkins(1999) and Crammer and Singer(2000), respectively. In this research, we used corporate information of 154 companies listed on KOSDAQ market in Korea exchange. We obtained companies' financial information of 2005 from the KIS(Korea Information Service, Inc.). Using this data, we made multi-class rating with DEA efficiency and built multi-class prediction model based data mining. Among three manners of multi-classification, the hit ratio of the Weston and Watkins method is the best in the test data set. In multi classification problems as efficiency ratings of venture business, it is very useful for investors to know the class with errors, one class difference, when it is difficult to find out the accurate class in the actual market. So we presented accuracy results within 1-class errors, and the Weston and Watkins method showed 85.7% accuracy in our test samples. We conclude that the DEA based multi-class approach in venture business generates more information than the binary classification problem, notwithstanding its efficiency level. We believe this model can help investors in decision making as it provides a reliably tool to evaluate venture companies in the financial domain. For the future research, we perceive the need to enhance such areas as the variable selection process, the parameter selection of kernel function, the generalization, and the sample size of multi-class.