• Title/Summary/Keyword: Multi-Dimensional emotion recognition

Search Result 5, Processing Time 0.018 seconds

Multi-Dimensional Emotion Recognition Model of Counseling Chatbot (상담 챗봇의 다차원 감정 인식 모델)

  • Lim, Myung Jin;Yi, Moung Ho;Shin, Ju Hyun
    • Smart Media Journal
    • /
    • v.10 no.4
    • /
    • pp.21-27
    • /
    • 2021
  • Recently, the importance of counseling is increasing due to the Corona Blue caused by COVID-19. Also, with the increase of non-face-to-face services, researches on chatbots that have changed the counseling media are being actively conducted. In non-face-to-face counseling through chatbot, it is most important to accurately understand the client's emotions. However, since there is a limit to recognizing emotions only in sentences written by the client, it is necessary to recognize the dimensional emotions embedded in the sentences for more accurate emotion recognition. Therefore, in this paper, the vector and sentence VAD (Valence, Arousal, Dominance) generated by learning the Word2Vec model after correcting the original data according to the characteristics of the data are learned using a deep learning algorithm to learn the multi-dimensional We propose an emotion recognition model. As a result of comparing three deep learning models as a method to verify the usefulness of the proposed model, R-squared showed the best performance with 0.8484 when the attention model is used.

Multi-modal Emotion Recognition using Semi-supervised Learning and Multiple Neural Networks in the Wild (준 지도학습과 여러 개의 딥 뉴럴 네트워크를 사용한 멀티 모달 기반 감정 인식 알고리즘)

  • Kim, Dae Ha;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.23 no.3
    • /
    • pp.351-360
    • /
    • 2018
  • Human emotion recognition is a research topic that is receiving continuous attention in computer vision and artificial intelligence domains. This paper proposes a method for classifying human emotions through multiple neural networks based on multi-modal signals which consist of image, landmark, and audio in a wild environment. The proposed method has the following features. First, the learning performance of the image-based network is greatly improved by employing both multi-task learning and semi-supervised learning using the spatio-temporal characteristic of videos. Second, a model for converting 1-dimensional (1D) landmark information of face into two-dimensional (2D) images, is newly proposed, and a CNN-LSTM network based on the model is proposed for better emotion recognition. Third, based on an observation that audio signals are often very effective for specific emotions, we propose an audio deep learning mechanism robust to the specific emotions. Finally, so-called emotion adaptive fusion is applied to enable synergy of multiple networks. The proposed network improves emotion classification performance by appropriately integrating existing supervised learning and semi-supervised learning networks. In the fifth attempt on the given test set in the EmotiW2017 challenge, the proposed method achieved a classification accuracy of 57.12%.

Video-based Facial Emotion Recognition using Active Shape Models and Statistical Pattern Recognizers (Active Shape Model과 통계적 패턴인식기를 이용한 얼굴 영상 기반 감정인식)

  • Jang, Gil-Jin;Jo, Ahra;Park, Jeong-Sik;Seo, Yong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.139-146
    • /
    • 2014
  • This paper proposes an efficient method for automatically distinguishing various facial expressions. To recognize the emotions from facial expressions, the facial images are obtained by digital cameras, and a number of feature points were extracted. The extracted feature points are then transformed to 49-dimensional feature vectors which are robust to scale and translational variations, and the facial emotions are recognized by statistical pattern classifiers such Naive Bayes, MLP (multi-layer perceptron), and SVM (support vector machine). Based on the experimental results with 5-fold cross validation, SVM was the best among the classifiers, whose performance was obtained by 50.8% for 6 emotion classification, and 78.0% for 3 emotions.

Facial expression recognition based on pleasure and arousal dimensions (쾌 및 각성차원 기반 얼굴 표정인식)

  • 신영숙;최광남
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.4
    • /
    • pp.33-42
    • /
    • 2003
  • This paper presents a new system for facial expression recognition based in dimension model of internal states. The information of facial expression are extracted to the three steps. In the first step, Gabor wavelet representation extracts the edges of face components. In the second step, sparse features of facial expressions are extracted using fuzzy C-means(FCM) clustering algorithm on neutral faces, and in the third step, are extracted using the Dynamic Model(DM) on the expression images. Finally, we show the recognition of facial expression based on the dimension model of internal states using a multi-layer perceptron. The two dimensional structure of emotion shows that it is possible to recognize not only facial expressions related to basic emotions but also expressions of various emotion.

  • PDF

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.41-51
    • /
    • 2023
  • In this paper, we propose a technique of multi-time window feature extraction for anger detection in gait data. In the previous gait-based emotion recognition methods, the pedestrian's stride, time taken for one stride, walking speed, and forward tilt angles of the neck and thorax are calculated. Then, minimum, mean, and maximum values are calculated for the entire interval to use them as features. However, each feature does not always change uniformly over the entire interval but sometimes changes locally. Therefore, we propose a multi-time window feature extraction technique that can extract both global and local features, from long-term to short-term. In addition, we also propose an ensemble model that consists of multiple classifiers. Each classifier is trained with features extracted from different multi-time windows. To verify the effectiveness of the proposed feature extraction technique and ensemble model, a public three-dimensional gait dataset was used. The simulation results demonstrate that the proposed ensemble model achieves the best performance compared to machine learning models trained with existing feature extraction techniques for four performance evaluation metrics.