• Title/Summary/Keyword: Multi-DOF

Search Result 158, Processing Time 0.036 seconds

Natural Resolution of DOF Redundancy in Execution of Robot Tasks;Stability on a Constraint Manifold

  • Arimoto, S.;Hashiguchi, H.;Bae, J.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.180-185
    • /
    • 2003
  • In order to enhance dexterity in execution of robot tasks, a redundant number of degrees-of-freedom (DOF) is adopted for design of robotic mechanisms like robot arms and multi-fingered robot hands. Associated with such redundancy in the number of DOFs relative to the number of physical variables necessary and sufficient for description of a given task, an extra performance index is introduced for controlling such a redundant robot in order to avoid arising of an ill-posed problem of inverse kinematics from the task space to the joint space. This paper shows that such an ill-posedness of DOF redundancy can be resolved in a natural way by using a novel concept named “stability on a manifold”. To show this, two illustrative robot tasks 1) robotic handwriting and 2) control of an object posture via rolling contact by a multi-DOF finger are analyzed in details.

  • PDF

Development of Modeling and control Methods for Multi-DOF dielectric polymer actuator

  • Jung, M.Y.;Jung, K.M.;Koo, J.C.;Choi, H.R.;Nam, J.D.;Lee, Y.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1225-1228
    • /
    • 2004
  • Principles and mechanism of energy transduction of dielectric polymer materials are well known from the various smart material related publications. However their introduction to industrial actuator applications is limited mainly due to difficulties guarantee controllability and reliability. Most of the previous publications have elaborates energy transduction physics of chunk of polymer while development of construction methods for feasible actuators made of the material is rarely proposed. In the present article, a conceptual design of multi-DOF linear polymer actuator construction that is to be controllable with moderate level of control work os introduced. In addition, numerical models that are developed with a unified energy based approach are presented not only for basic working mechanism analysis of the polymetric soft actuator but for providing analytical foundation to expend the concept toward design of multi-DOF actuator controls.

  • PDF

Inverse and Forward Kinematics Analysis of 6 DOF Multi Axis Simulation Table and Verification (6 자유도 다축 시뮬레이션 테이블의 역.순기구학 해석 및 검증)

  • Jin, Jae-Hyun;Jeon, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.202-208
    • /
    • 2008
  • A 6 DOF Multi axis simulation table (MAST) is used to perform vibration and fatigue tests for parts or assemblies of automobiles, aircraft, or other systems. It consists of a table and 6 linear actuators. For its attitude control, we have to adjust the lengths of 6 actuators properly. The system is essentially a parallel mechanism. Three actuators are connected to the table directly and other three actuators are connected indirectly. Because of these, the MAST shows also a serial mechanism#s property: the inverse kinematics is more complicated than a pure parallel mechanism and each actuator can operate independently. The authors have performed a kinematics analysis of the 6 DOF MAST. We have presented an analytical and a numerical solution for the inverse and forward kinematics, and we have verified the solutions by a 3D CAD software.

Evaluation method of isolation performance for MIMO isolation table using singular value of transmissibility matrix (전달율 행렬의 특이치를 이용한 다입력/다출력 제진대계의 절연성능 평가법)

  • Sun, Jong-Oh;Kim, Kwang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.324-329
    • /
    • 2012
  • Isolation tables are widely used for precision equipments and their isolation performances have been usually expressed and evaluated by transsmissibility. However, transmissibility is a concept for 1-degree of freedom(DOF) system. In practice, isolation tables are supproted by more than 4 springs. Each spring is subjected to vertical and horizontal ground vibrations, and also the table has more than 1-DOF. Therefore, isolation tables should be treated as multi-input/multi-output(MIMO) system of which isolation performance is expressed by transmissibility matrix. However, the matrix is too complicated to be an index for a system. In this paper, maximum singular value of transmissibility matrx is suggested as a simple performance index of a MIMO isolation system. Physical meaning of singular value is explained using a simple a 2-DOF isolation table. Furthermore, maximum singular values of passive, 3-DOF active and 6-DOF active isolation tables are obtained through experiments, and their meaning are explained and compared with each other.

  • PDF

The Research of 2 DOF 3D Motion Simulator (2 DOF 3D 운동 시뮬례이터 실험)

  • 김영진;최명환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.260-260
    • /
    • 2000
  • In this work, we have developed a 2 degree of freedom(DOF) motion simulator that can generate the sensation of motion in a 6 DOF space. The motion base has the DOF of roll and pitch, and the purpose of the motion base is to create the sensation of riding a vehicle in a 3D space by controlling the motion base. The dynamics of the mechanism was analysed and the optimal design of the motion base mechanism has been reached. The prototype motion base mechanism was developed and tested. The multi-axis motion controller(MMC) was used to control the two ac servo motors that drive the roll and pitch motion.

  • PDF

A Study on The Novel Structured 3-DOF Spherical Motor (새로운 3-자유도 구형 모터에 관한 연구)

  • Lee, Dong-Cheol;Kim, Dae-Kyong;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1362-1370
    • /
    • 2008
  • This paper describes the design and characteristic analysis of a novel 3-DOF(Degree of Freedom) spherical motor. For multi DOF actuating, several numbers of motors have been used. By the using of normal motors they connected each other in single joint, is necessary to a several type of complex power transmission devices. The 3-DOF spherical motor can drive roll, pitch, and yaw motion in only one unit and it is not necessary to use additional gears and links parts. Therefore the using of 3-DOF spherical motor can eliminate; combined effects of inertia, backlash, non-linear friction, and elastic deformation of gears. In this paper, we propose the novel structured 3-DOF spherical motor and derive its principles of operation. Firstly, we designed concept model of novel structured 3-DOF spherical motor. Next, we derive the control method by calculating the currents. Also, to have intuitive driving control, we express the rotor position in equivalent angle-axis system and determine the exciting period of currents from the calculation result of the currents. To verify the control method, we calculated the currents by the position of rotor. and then we analyzed the characteristics by 3D Finite Element Method when the calculated currents are excited.