The universe has been ionized in the post-reionization by several photon contributors. The dominant source to produce the hydrogen ionizing photons is not revealed so far. Faint quasars have been expected to generate UV photon budgets required to maintain ionization state of universe. Observational limits, however, hinder to discover them despite their higher number density than bright one. Consequently, the influence of faint quasars on post-reionization are not considered sufficiently. Therefore, a survey to find faint quasars at z ~ 5 is crucial to determine the main ionizing source in the post-reionization era. Deep images from the Hyper Suprime-Cam Subaru Strategic Program (HSC SSP) allow us to search for quasar swith low luminosities in the ELAIS-N1 field. J band information are obtained by the Infrared Medium-deep Survey (IMS) and the UKIRT Infrared Deep Sky Survey (UKIDSS) - Deep ExtragalacticSurvey (DXS). Faint quasar candidates were selected from several multi-band color cut criteria based on simulated quasars on color-color diagram. To choose the reliable candidates with possible Lyman break, we have performed medium-bands observations. Whether a candidate is a quasar or a dwarf star contamination was decided by results from chi-square minimization of quasar/dwarf model fitting. Spectroscopic follow-up observations confirm three quasars at z ~ 5. 100% spectral confirmation success rate implies that the medium-band observations effectively select faint quasars with strong Lyman alpha emission.
In this paper, a study was conducted to predict natural disasters in Afghanistan based on machine learning. Natural disasters need to be prepared not only in Korea but also in other vulnerable countries. Every year in Afghanistan, natural disasters(snow, earthquake, drought, flood) cause property and casualties. We decided to conduct research on this phenomenon because we thought that the damage would be small if we were to prepare for it. The Azure Machine Learning Studio used in the study has the advantage of being more visible and easier to use than other Machine Learning tools. Decision Forest is a model for classifying into decision tree types. Decision forest enables intuitive analysis as a model that is easy to analyze results and presents key variables and separation criteria. Also, since it is a nonparametric model, it is free to assume (normality, independence, equal dispersion) required by the statistical model. Finally, linear/non-linear relationships can be searched considering interactions between variables. Therefore, the study used decision forest. The study found that overall accuracy was 89 percent and average accuracy was 97 percent. Although the results of the experiment showed a little high accuracy, items with low natural disaster frequency were less accurate due to lack of learning. By learning and complementing more data, overall accuracy can be improved, and damage can be reduced by predicting natural disasters.
Background: In this study, various types of deep-learning models for predicting in vitro radiosensitivity from gene-expression profiling were compared. Methods: The clonogenic surviving fractions at 2 Gy from previous publications and microarray gene-expression data from the National Cancer Institute-60 cell lines were used to measure the radiosensitivity. Seven different prediction models including three distinct multi-layered perceptrons (MLP), four different convolutional neural networks (CNN) were compared. Folded cross-validation was applied to train and evaluate model performance. The criteria for correct prediction were absolute error < 0.02 or relative error < 10%. The models were compared in terms of prediction accuracy, training time per epoch, training fluctuations, and required calculation resources. Results: The strength of MLP-based models was their fast initial convergence and short training time per epoch. They represented significantly different prediction accuracy depending on the model configuration. The CNN-based models showed relatively high prediction accuracy, low training fluctuations, and a relatively small increase in the memory requirement as the model deepens. Conclusion: Our findings suggest that a CNN-based model with moderate depth would be appropriate when the prediction accuracy is important, and a shallow MLP-based model can be recommended when either the training resources or time are limited.
The CRUD on the fuel cladding under the pressurized water reactor (PWR) operating condition causes several issues. The CRUD can act as thermal resistance and increases the local cladding temperature which accelerate the corrosion process. The hideout of boron inside the CRUD results in axial offset anomaly and reduces the plant's shutdown margin. Recently, there are efforts to revise the acceptance criteria of emergency core cooling systems (ECCS), and additionally require the modeling of the thermal resistance effect of the CRUD during the performance analysis. There is an urgent need for the evaluation of the effect of the CRUD deposition on the cladding heat transfer under PWR operating conditions, but the experimental database is very limited. The experimental facility called DISNY was designed and constructed to analyze the CRUD-related multi-physical phenomena, and the performance analysis of the constructed DISNY facility was conducted. The thermal-hydraulic and water chemistry conditions to simulate the CRUD growth under PWR operating conditions were established. The design characteristics and feasibility of the DISNY facility were validated by the MARS-KS code analysis and separate performance tests. In the current study, detailed design features, design validation results, and future utilization plans of the proposed DISNY facility are presented.
This study proposes a procedure for designing a labyrinth seal that meets both leakage flow rate and rotordynamic performance criteria (effective damping, amplification factor, separation margin, logarithmic decrement, and vibration amplitude). The seal is modeled using a one control volume (1CV) bulk flow approach to predict the leakage flow rate and rotordynamic coefficients. The rotating shaft is modeled with the finite element (FE) method and is assumed to be supported by two linearized bearings. Geometry, material and operating conditions of the rotating shaft, and the supporting characteristics of the bearings were fixed. A single labyrinth seal is placed at the center of the rotor, and the linearized dynamic coefficients predicted by the seal numerical model are inserted as linear springs and dampers at the seal position. Seal designs that satisfy both leakage and rotordynamic performance are searched by modifying five seal design parameters using the multi-grid method. The five design parameters include pre-swirl ratio, number of teeth, tooth pitch, tooth height and tooth tip width. In total, 12500 seal models are examined and the optimal seal design is selected. Finally, normalization was performed to select the optimal labyrinth seal designs that satisfy the system performance requirements.
International Journal of Computer Science & Network Security
/
v.23
no.5
/
pp.163-171
/
2023
The intelligent transportation system has made a huge leap in the level of human services, which has had a positive impact on the quality of life of users. On the other hand, these services are becoming a new source of risk due to the use of data collected from vehicles, on which intelligent systems rely to create automatic contextual adaptation. Most of the popular privacy protection methods, such as Dummy and obfuscation, cannot be used with many services because of their impact on the accuracy of the service provided itself, they depend on changing the number of vehicles or their physical locations. This research presents a new approach based on the shuffling Nicknames of vehicles. It fully maintains the quality of the service and prevents tracking users permanently, penetrating their privacy, revealing their whereabouts, or discovering additional details about the nature of their behavior and movements. Our approach is based on creating a central Nicknames Pool in the cloud as well as distributed subpools in fog nodes to avoid intelligent delays and overloading of the central architecture. Finally, we will prove by simulation and discussion by examples the superiority of the proposed approach and its ability to adapt to new services and provide an effective level of protection. In the comparison, we will rely on the wellknown privacy criteria: Entropy, Ubiquity, and Performance.
Journal of the Korean Society of Clothing and Textiles
/
v.47
no.1
/
pp.137-151
/
2023
Stationary 3D whole-body scanners generally require 5 to 20 seconds of scanning time and cannot effectively detect armpit and crotch areas. Therefore, this study aimed to analyze the accuracy of a photogrammetric technique using a multi-camera system. First, dimensional accuracy was analyzed using a mannequin scan, comparing the differences between the scan-derived measurements and the direct measurements, with an allowable tolerance of ISO 20685-1:2018. Only 2 of 59 measurement items (ankle height and upper arm circumference, specifically) exceeded the ISO 20685-1:2018 criteria. When compared with the results of the eight stationary whole-body scanners assessed by the literature, the photogrammetric technique was found to have the advantage of scanning the top of the head, armpit, and crotch areas clearly. Second, this study found the photogrammetric technique is suitable for obtaining the body scans because it can minimize the perform scanning, resulting in a reduction of measurement errors due to breathing and uncontrolled movements. The error rate of the photogrammetry method was much lower than that of stationary 3D whole-body scanners.
Various decontamination technologies have been developed for removing contaminated areas in industries. Although it is important to consider parameters such as safety, cost, and time when selecting the decontamination technology, till date their comparative study is missing. Furthermore, different decontamination technologies influence the decontamination effects in different ways. Therefore, this study compares different decontamination techniques for the steam generator using a multicriteria decision-making method. A steam generator is a large device comprising both low- and very low-level waste (LLW, VLLW) and reflects the difference in weights of the standards according to the classification of the waste. For LLW and VLLW decontaminations, chemical oxidizing reduction decontamination (CORD) and decontamination grit blasting were used as the preferred techniques, respectively, considering the purpose of decontamination differs based on the initial state of waste. An expert survey revealed that safety in LLW and waste minimization in VLLW exhibited high preference. This evaluation method can be applied not only to the comparison between each process, but also to the creation of process scenarios. Therefore, determining the decontamination approach using logical decision-making methods may improve the safety and economic feasibility of each step in the decommissioning process and ensure a public acceptance.
Ali Faghfouri;Hamidreza Vosoughifar;Seyedehzeinab Hosseininejad
Smart Structures and Systems
/
v.31
no.6
/
pp.545-559
/
2023
Nanoparticle strips (NPS) are widely used as external reinforcers for two-way reinforced concrete slabs. However, the Structural Health Monitoring (SHM) of these slabs is a very important issue and was evaluated in this study. This study has been done analytically and numerically to optimize the placement of sensors. The properties of slabs and carbon nanotubes as composite sheets were considered isotopic and orthotropic, respectively. The nonlinear Finite Element Method (FEM) approach and suitable optimal placement of sensor approach were developed as a new MATLAB toolbox called DECOMAC by the authors of this paper. The Suitable multi-objective function was considered in optimized processes based on distributed ECOMAC method. Some common concrete slabs in construction with different aspect ratios were considered as case studies. The dimension and distance of nano strips in retrofitting process were selected according to building codes. The results of Optimal Sensor Placement (OSP) by DECOMAC algorithm on un-retrofitted and retrofitted slabs were compared. The statistical analysis according to the Mann-Whitney criteria shows that there is a significant difference between them (mean P-value = 0.61).
Accurately estimation of the geo-mechanical parameters in Artificial Ground Freezing (AGF) is a most important scientific topic in soil improvement and geotechnical engineering. In order for this, one way is using classical and conventional constitutive models based on different theories like critical state theory, Hooke's law, and so on, which are time-consuming, costly, and troublous. The others are the application of artificial intelligence (AI) techniques to predict considered parameters and behaviors accurately. This study presents a comprehensive data-mining-based model for predicting the Young's Modulus of frozen sand under the triaxial test. For this aim, several single and hybrid models were considered including additive regression, bagging, M5-Rules, M5P, random forests (RF), support vector regression (SVR), locally weighted linear (LWL), gaussian process regression (GPR), and multi-layered perceptron neural network (MLP). In the present study, cell pressure, strain rate, temperature, time, and strain were considered as the input variables, where the Young's Modulus was recognized as target. The results showed that all selected single and hybrid predicting models have acceptable agreement with measured experimental results. Especially, hybrid Additive Regression-Gaussian Process Regression and Bagging-Gaussian Process Regression have the best accuracy based on Model performance assessment criteria.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.