• 제목/요약/키워드: Multi-Component Fuel

검색결과 43건 처리시간 0.024초

수증기-메탄개질용 Ni 촉매의 유용도에 관한 수치적 연구 (A Numerical Study on the Effectiveness Factor of Ni Catalyst Pellets for Steam-Methane Reforming)

  • 최종균;남진현;신동훈;정태용;김영규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.63-66
    • /
    • 2007
  • Reformers which produce hydrogen from natural gas are essential for the operation of residential PEM fuel cells. For this purpose, steam-methane reforming reactions with Ni catalysts is primarily utilized. Commercial Ni catalysts are generally made to have porous pellet shapes in which Ni catalyst particles are uniformly dispersed over Alumina support structures. This study numerically investigates the reduction of catalyst effectiveness due to the mass transport resistances posed by porous structures of spherical catalyst pellets. The multi-component diffusion through porous media and the accurate kinetics of reforming reaction is fully considered in the numerical model. The preliminary results on the variation of the effectiveness factor according to different operation conditions are presented, which is planned to be used to develop correlations in future studies.

  • PDF

다성분 혼합연료를 이용한 디젤분무의 착화연소특성에 관한 연구 (A Study on the Characteristics of Ignition and Combustion, in a Diesel Spray Using Multi-Component Mixed Fuels)

  • 윤준규;임종한
    • 에너지공학
    • /
    • 제16권3호
    • /
    • pp.120-127
    • /
    • 2007
  • 본 연구의 목적은 디젤연소장의 분위기조건에 따라 다성분 혼합연료의 질량분률이 분무착화 및 연소특성에 미치는 영향을 실험적으로 고찰하는데 있다. 착화 및 연소특성은 화학발광계측법 및 직접촬영법을 이용하여 분석되었다. 실험은 광계측기를 사용하여 RCEM에서 이루어졌으며, 이소옥탄, 노말 도데칸, 노말 헥사데칸으로 혼합한 다성분연료는 커먼레일 인젝터의 전자제어에 의해 RCEM의 연소실 내로 분사된다. 실험조건은 분사압력 42, 72, 112 MPa과 분위기온도 700, 800, 900 K로 하였다. 그 결과로서 착화지연은 고세탄가성분에 의존하고, 분위기온도가 낮을 경우 저비점성분 혼합비율의 증가에 따라 휘도영역이 현저하게 낮아지며, 열발생률이 증가하면서 확산연소기간을 단축시킨다.

SIMMER-IV application to safety assessment of severe accident in a small SFR

  • H. Tagami;Y. Tobita
    • Nuclear Engineering and Technology
    • /
    • 제56권3호
    • /
    • pp.873-879
    • /
    • 2024
  • A sodium-cooled fast reactor (SFR) core has a potential of prompt criticality due to a change of core material distribution during a severe accident, and the resultant energy release has been one of the safety issues of SFRs. In this study, the safety assessment of an unprotected loss-of-flow (ULOF) in a small SFR (SSFR) has been performed using the SIMMER-IV computer code, which couples the models of space- and time-dependent neutronics and multi-component, multi-field thermal hydraulics in three dimensions. The code, therefore, is applicable to the simulations of transient behaviors of extended disrupted core material motion and its reactivity effects during the transition phase (TP) of ULOF, including a potential of prompt-criticality power excursions driven by fuel compaction. Several conservative assumptions are used in the TP analysis by SIMMER-IV. It was found out that one of the important mechanisms that drives the reactivity-inserting fuel motion was sodium vapor pressure resulted from a fuel-coolant interaction (FCI), which itself was non-energetic local phenomenon. The uncertainties relating to FCI is also evaluated in much conservative way in the sensitivity analysis. From this study, the ULOF characteristics in an SSFR have been understood. Occurrence of recriticality events under conservative assumptions are plausible, but their energy releases are limited.

차량 경량화를 위한 이종소재 접합 연구 (Heat Generation and Machining Accuracy According to Material for Ultra-Precision Machining)

  • 이경일;김재열;이동기
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.130-135
    • /
    • 2018
  • Currently the automobile market is developing eco-friendly vehicles in order to cope with fuel efficiency regulations. Many studies have been conducted to improve travel performance and fuel economy of the environment-friendly vehicles, and vehicle manufacturers study how to manufacture light-weight vehicles for improving fuel economy for both existing vehicles and environment-friendly vehicles. Exemplary light-weight vehicle technologies include optimal design of vehicle body structure which is a light-weight vehicle method by changing component shapes or layout to optimize the vehicle body structure and the new process technology for using new light-weight and very strong materials Various studies.

과일폐기물을 이용한 DEFC용 바이오에탄올 제조 및 특성에 관한 연구 (A Study on Characteristic of the Bio-ethanol Produced on Fruit Wastes for Direct Ethanol Fuel Cell (DEFC))

  • 이남진;김현수;차인수;최정식
    • 한국수소및신에너지학회논문집
    • /
    • 제22권2호
    • /
    • pp.257-264
    • /
    • 2011
  • This study discribes performance of DEFC (Direct Ethanol Fuel Cell) utilized bio-ethanol based on fruit wastes. To produce the bio-ethanol, fruit wastes were treated at temperature $120^{\circ}C$ and 90minutes in acid pre-treatment. After pre-treatment was done, alcohol fermentation process was running. Initial alcohol concentration was 5%. Using the multi coloumn distillation system, more than 95% ethanol was distilled and each component of bio-ethanol was analyzed. In DEFC performance test, it was revealed that cell performance was much higher than that of ethanol. Comparing ethanol with mixed fuel (bio-ethanol (10%) + ethanol (90%)), the performance of ethanol was higher than that of mixed fuel. Even though the bio-ethanol from the fruit wastes is corresponded with transport ethanol standards, it thought that organic matter in bio-ethanol could be negative effect on fuel cell.

디젤 분무와 천연 가스 분류의 거동 특성에 관한 기초 연구 (A Basic Study of the Behavior Characteristics of Diesel Spray and Natural-gas Jet)

  • 염정국;김민철
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.13-21
    • /
    • 2009
  • This basic study is required to examine spray or jet behavior depending on fuel phase. In this study, analyses of diesel fuel(n-Tridecane, $C_{13}H_{28}$) spray and natural gas fuel(Methane, $CH_4$) jet under high temperature and pressure are performed by a general-purpose program, ANSYS CFX release 11.0, and the results of these are compared with experimental results of diesel fuel spray using the exciplex fluorescence method. The simulation results of diesel spray is analyzed by using the combination of Large-Eddy Simulation(LES) and Lagrangian Particle Tracking(LPT) and of a natural gas jet is analyzed by using Multi-Component Model(MCM). There are two study variables considered, that is, ambient pressure and injection pressure. In a macroscopic analysis, the higher ambient pressure is, the shorter spray or jet tip penetration is at each time after start of injection. And the higher injection pressure is, the longer spray or jet tip penetration is at each time after start of injection. When liquid fuel is injected, droplets of the fuel need some time to evaporate. However, when natural gas fuel is injected, the fuel does not need time to evaporate. Gas fuel consists of minute particles. Therefore, the gas fuel is mixed with the ambient gas more quickly at the initial time of injection than the liquid fuel is done. The experimental results also validate the usefulness of this analysis.

  • PDF

사용후핵연료 저장용기의 지진시 활동거동 (Sliding Response of Spent Fuel Storage Cask to Earthquake)

  • 최인길;전영선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.70-77
    • /
    • 1996
  • In this study, sliding response analysis of free standing structure such as multi-purpose nuclear spent fuel storage cask is peformed. The governing factors of sliding response are aspect ratio of structure and ground acceleration. The vertical acceleration component is very important factor in the sliding response of the structure. Based on the mathematical model, computer program is developed using direct forward integration method to predict the sliding response. Using the program, several parametric studies were made for sinusodial ground motion and for El Centre 1940 earthquake and Mexico 1973 earthquake. From the results, it is known that the frequency content and duration of strong motion affect the sliding of the structure.

  • PDF

멀티 레벨 컨버터를 이용한 연료 전지 시스템의 전력품질 분석과 개선 (Analysis and Improvement of Power Quality for A Fuel Cell System Based on Multi-level Converters)

  • 김윤호;문현욱;김수홍;정은진
    • 에너지공학
    • /
    • 제14권1호
    • /
    • pp.37-45
    • /
    • 2005
  • 연료 전지 시스템은 아주 유용한 에너지원 중의 하나이다. 시스템은 재사용이 가능하고 환경 친화적인 에너지원이라는 장점을 갖는다. 연료 전지로부터 교류 성분을 얻기 위해서는 인버터가 필요하다. 멀티 레벨 컨버터는 고 전력 연료 전지 시스템에 대한 인버터로서 사용된다. 고조파 분석을 통하여 멀티 레벨컨버터에서 연료 전지의 전압 강하가 증가할 때 기본파 성분은 감소하는 반면 고조파 성분과 왜형률이 증가하는 것을 알 수 있다. 전압 강하 문제를 해결하기 위해서 연료 전지 출력단에 부스트 컨버터 사용, 펄스폭 제어, 울트라커패시터 사용 등 세 가지 서로 다른 해결 방법을 이 논문에서 제안하였다. 제안된 세 가지 해결 방법을 분석하였고 시뮬레이션 결과를 사용하여 비교 분석하였다.

Properties of the metallic glass thin films fabricated by multicomponent single alloying target and its applications in various industrial fields

  • Shin, S.Y.;Moon, K.I.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.77-77
    • /
    • 2015
  • Metallic glass alloys having dense packing structure have short range ordered structure with long range homogeneity. Therefore, they can provide complete corrosion protection and unique electrical properties. Recently, metallic glass thin films have received much attention to extend its application fields combining with PVC coating technologies. The metallic glass thin films can change the surface properties of the conventional bulk materials which need anticorrosion properties. However, multi-component alloying targets are required to fabricate the metallic glass thin films because metallic glass alloys contain more than three elements. Recently, many researchers have been reported the properties of the metallic glass thin films synthesized with multi-cathode systems or amorphous target. But, it is difficult to fabricate the large sized sputtering targets for mass production equipment with high toughness and thermal stability. In this study, newly developed sputtering target with glass forming ability and the properties of the metallic glass thin films will be introduced with respect to the various application fields such as bipolar plate in PEM fuel cell and decorative coatings for electric device and construction fields.

  • PDF

컴팩트 타입 실리카막 공정을 이용한 수소 분리 (Hydrogen Separation by Compact-type Silica Membrane Process)

  • 문종호;배지한;이상진;정종태;이창하
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.336-339
    • /
    • 2006
  • With the steady depletion off fossil fuel reserves, hydrogen based energy sources become increasingly attractive. Therefore hydrogen production or separation technologies, such as Bas separation membrane based on adsorption technology, have received enormous attention in the industrial and academic fields. In this study, the transport mechanisms of the MTES (methyltriethoxysilane) templating silica/a-alumina composite membrane were evaluated by using unary, binary and quaternary hydrogen gas mixtures permeation experiments at unsteady- and steady-states. Since the permeation flux in the MTES membrane, through the experimental and theoretical study, was affected by molecular sieving effects as well as surface diffusion properties, the kinetic and equilibrium separation should be considered simultaneously in the membrane according to molecular properties. In order to depict the transient multi-component permeation on the templating silica membrane, the GMS (generalized Maxwell-Stefan) and DGM (dust Bas model) were adapted to unsteady-state material balance

  • PDF