• Title/Summary/Keyword: Multi-Class Multi-Resource Loss Model

Search Result 2, Processing Time 0.072 seconds

Queueing Traffic Model of Giving a Priority to Handoff Calls in OFDMA Wireless Communication Systems (핸드오프호를 고려한 OFDMA 무선통신시스템의 확률적 트래픽모형)

  • Paik, Chun-Hyun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.36 no.3
    • /
    • pp.45-59
    • /
    • 2011
  • OFDMA systems have been expected to be widely used to provide multimedia services over wireless channels. To evaluate performance of the OFDMA system, power should be considered as system resource as well as subcarriers. This study propose a queueing traffic model incorporating two kinds of resources (power and subcarriers), and an extended model giving a priority to handoff calls over new calls. Some extensive experiments are conducted to illustrate the usefulness of the proposed traffic model.

Resource Allocation schemes for the asymmetric multimedia services (비대칭 멀티미디어 서비스를 위한 자원 할당 방법)

  • 이종찬;이문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9A
    • /
    • pp.736-745
    • /
    • 2003
  • Resource allocation methods are proposed to address the problem of how flexibly allocate limited wireless resource to high bandwidth demanded realtime class with certain QoS guarantees in CDMA/TDD systems. In this method, A reserved access scheme is used for allocating the resource to realtime and non-realtime class respectively. We also propose a slot allocation algorithm for the CDMA/TDD system, which can prevent the performance degradation due to the interlink interference in each cell. Our framework is able to guarantee QoS continuity of realtime class and carry the maximum number of non-realtime subscriber. System performance of proposed method is evaluated by considering transmission delay, channel utilization and data loss, assuming a practical multi-cell environment and a multimedia service model. Our simulation results demonstrate the significant performance improvement.