• Title/Summary/Keyword: Multi-Channel switch IC

Search Result 2, Processing Time 0.015 seconds

Filed Programmable Logic Control and Test Pattern Generation for IoT Multiple Object switch Control (사물인터넷 환경에서 다중 객체 스위치 제어를 위한 프로그래밍 가능한 로직제어 및 테스트 패턴 형성)

  • Kim, Eung-Ju;Jung, Ji-Hak
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.1
    • /
    • pp.97-102
    • /
    • 2020
  • Multi-Channel Switch ICs for IoT have integrated several solid state structure low ON-resistance bi-directional relay MOS switches with level shifter to drive high voltage and they should be independently controlled by external serialized logic control. These devices are designed for using in applications requiring high-voltage switching control by low-voltage control signals, such as medical ultra-sound imaging, ink-jet printer control, bare board open/short and leakage test system using Kelvin 4-terminal measurement method. This paper describes implementation of analog switch control block and its verification using Field programmable Gate Array (FPGA) test pattern generation. Each block has been implemented using Verilog hardware description language then simulated by Modelsim and prototyped in a FPGA board. Compare to conventional IC, The proposed architecture can be applied to fields where multiple entities need to be controlled simultaneously in the IoT environment and the proposed pattern generation method can be applied to test similar types of ICs.

A Reconfigurable Analog Front-end Integrated Circuit for Medical Ultrasound Imaging Systems (초음파 의료 영상 시스템을 위한 재구성 가능한 아날로그 집적회로)

  • Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.66-71
    • /
    • 2014
  • This paper presents an analog front-end integrated circuit (IC) for medical ultrasound imaging systems using standard $0.18-{\mu}m$ CMOS process. The proposed front-end circuit includes the transmit part which consists of 15-V high-voltage pulser operating at 2.6 MHz, and the receive part which consists of switch and a low-power low-noise preamplifier. Depending on the operation mode, the output driver in the transmit pulser can be reconfigured as the switch in the receive path and thus the area of the overall front-end IC is reduced by over 70% in comparison to previous work. The designed single-channel front-end prototype consumes less than $0.045mm^2$ of core area and can be utilized as a key building block in highly-integrated multi-array ultrasound medical imaging systems.