• Title/Summary/Keyword: Multi-Block Scheme

Search Result 149, Processing Time 0.025 seconds

Joint Base Station and Relay Precoder Design with Relay Local Channel State Information for Multi-relay Aided Multi-user All-MIMO System (다중 릴레이, 다중 사용자 All-MIMO 시스템에서 릴레이 지역 채널 정보를 사용한 기지국 및 릴레이 전처리기 공동 설계 기법)

  • Cho, Young-Min;Jang, Seung-Jun;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.405-419
    • /
    • 2012
  • In this paper, we propose a joint base station(BS) and relay precoders design in multi-relay aided multi-user all-multiple-input multiple-output(MIMO) system. The design criterion is to minimize user sum mean square error(SMSE) with relay sum power constraint(RSPC) where only local channel state information(CSI)s are available at relays. Local CSI at a relay is defined as the CSI of the channel which the relay itself accesses, out of among all the 1st hop and the 2nd hop channel in the system. With BS precoder structure which is concatenated with block diagonalization(BD) precoder, each relay can determine its own precoder using only local CSI. Proposed scheme is based on sequential iteration of two stages; stage 1 determines BS precoder and relay precoders jointly with SMSE duality, and stage 2 determines user receivers. Proposed scheme can be demonstrated theoretically to be always converge. We verify that proposed scheme outperforms simple amplify-and-forward(SAF), MMSE relay, and proposed schemes in [1] in terms of both SMSE and sum-rate performances.

An Efficient Fading Estimation and Compensation Techniques for Transmission of Trellis Coded 16 QAM in Wireless Communication Channel (무선통신채널에서 트렐리스 부호화한 16 QAM 신호전송을 위한 효율적인 페이딩 추정.보상방안)

  • 김순영;김정수;이광재;이문호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.6
    • /
    • pp.855-865
    • /
    • 1999
  • This paper presents the improvement of BER performance using fading compensation method for 16 QAM-TCM to reduce the effects of multi-path fading in mobile radio environments. We propose the multi-pilot symbol aided fading compensation technique using Gausian interpolation method for inter-symbol interference or fading distortion occured in frequency selective fading channel. The proposed system is combined coding and modulation scheme for improving the reliability of a digital transmission system without increasing the transmitted power or the required bandwidth. In the fading compensation, the pilot symbols from a known sequence is multiplexed into the data symbols at regular intervals to from a frames for transmission. And we use a modified bit reversal block interleaver to randomize burst errors. The results show that significant improvements in the bit-error rate performances can be achieved by the proposed techniques.

  • PDF

An analysis of Optimal Design Conditions of Multi-mode LDPC Decoder for IEEE 802.11n WLAN System (IEEE 802.11n WLAN용 다중모드 LPDC 복호기의 최적 설계조건 분석)

  • Park, Hae-Won;Na, Young-Heon;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.432-438
    • /
    • 2011
  • This paper describes an analysis of optimal design conditions of multi-mode LDPC(low density parity check) decoder which supports three block lengths (648, 1296, 1944) and four code rates (1/2, 2/3, 3/4, 5/6) for IEEE 802.11n WLAN system. A fixed-point model of LDPC decoder, which adopts min-sum algorithm and layered decoding scheme, is implemented using Matlab. From fixed-point simulation results for various bit-width parameters such as internal bit-width, integer/fractional part bit-widths, optimal design conditions and decoding performance of LDPC decoder are analyzed.

An Efficient Data Block Replacement and Rearrangement Technique for Hybrid Hard Disk Drive (하이브리드 하드디스크를 위한 효율적인 데이터 블록 교체 및 재배치 기법)

  • Park, Kwang-Hee;Lee, Geun-Hyung;Kim, Deok-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Recently heterogeneous storage system such as hybrid hard disk drive (H-HDD) combining flash memory and magnetic disk is launched, according as the read performance of NAND flash memory is enhanced as similar to that of hard disk drive (HDD) and the power consumption of NAND flash memory is reduced less than that of HDD. However, the read and write operations of NAND flash memory are slower than those of rotational disk. Besides, serious overheads are incurred on CPU and main memory in the case that intensive write requests to flash memory are repeatedly occurred. In this paper, we propose the Least Frequently Used-Hot scheme that replaces the data blocks whose reference frequency of read operation is low and update frequency of write operation is high, and the data flushing scheme that rearranges the data blocks into the multi-zone of the rotation disk. Experimental results show that the execution time of the proposed method is 38% faster than those of conventional LRU and LFU block replacement schemes in I/O performance aspect and the proposed method increases the life span of Non-Volatile Cache 40% higher than those of conventional LRU, LFU, FIFO block replacement schemes.

NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH (비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법)

  • Kim, Jong-Tae;Park, Ik-Kyu;Cho, Hyung-Kyu;Kim, Kyung Doo;Jeong, Jae-Jun
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.86-95
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

A Study for Reducing the PAPR in OFDM System (OFDM 시스템에서 PAPR 감소 방안에 관한 연구)

  • Kong, Hyung-Yun;Woo, Il-Seung
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.57-60
    • /
    • 2000
  • In this paper, we proposed new scheme to reduce the Peak-to-Average Power Ratio (PAPR) in Orthogonal Frequency Division Multiplexing (OFDM) system OFDM system is highlighted for multi-media communication system, however it has large PAPR. To reduce the PAPR in OFDM system, several techniques have been proposed such as clipping, coding and so on Our proposed method is a case of block coding and proposed system be termed Sub-Coding OFDM (SC-OFDM) system We also compare the performance between conventional and our proposed OFDM system by computer simulation.

  • PDF

A Computational Study on the Unsteady Lateral Loads in a Rocket Nozzle

  • Nagdewe, Suryakant;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.289-292
    • /
    • 2008
  • Highly over-expanded nozzle of the rocket engines will be excited by non-axial forces due to flow separation at sea level operations. Since rocket engines are designed to produce axial thrust to power the vehicle, non-axial static and/or dynamic forces are not desirable. Several engine failures were attributed to the side loads. Present work investigate the unsteady flow in an over-expanded rocket nozzle in order to estimate side load during a shutdown/starting. Numerical computations has been carried out with density based solver on multi-block structured grid. Present solver is explicit in time and unsteady time step is calculated using dual time step approach. AUSMDV is considered as a numerical scheme for the flux calculations. One equation Spalart-Allmaras turbulence model is selected. Results presented here is for two nozzle pressure ratio i.e. 100 and 20. At 100 NPR, restricted shock separation (RSS) pattern is observed while, 20 NPR shows free shock separation (FSS) pattern. Side load is observed during the transition of separation pattern at different NPR.

  • PDF

NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH (비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법)

  • Kim, Jong-tae;Park, Ik-Kyu;Cho, Hyung-Kyu;Kim, Kyung-Doo;Jeong, Jae-Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.71-78
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

  • PDF

Numerical Analysis of Aerodynamic Performance for Tilt Rotor Aircraft in Cruise Mode Using Chimaera Grid Method (겹침격자 기법을 이용한 틸트로터의 순항모드에 대한 공력성능 수치해석)

  • Ko S. H.;Ahn S. W.;Kim B. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.87-90
    • /
    • 2004
  • A numerical analysis was made for the unsteady flow fields of rotor system of a Tilt-Rotor aircraft in cruise mode. The Reynolds-averaged thin-layer Navier-Stokes equations were discretized by Roe's upwind differencing scheme and integrated in time by the LU-SGS algorithm. The computational domain of the rotor system was constructed by six multi-block Chimera grids. Simulated unsteady flow fields of rotating blades were studied in several different view points.

  • PDF

NUMERICAL METHOD FOR TWO-PHASE FLOW ANALYSIS USING SIMPLE-ALGORITHM ON AN UNSTRUCTURED MESH (비정렬격자 SIMPLE 알고리즘기반 이상유동 수치해석 기법)

  • Kim, Jong-Tae;Park, Ik-Kyu;Cho, Hyung-Kyu;Kim, Kyung-Doo;Jeong, Jae-Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.71-78
    • /
    • 2008
  • For analyses of multi-phase flows in a water-cooled nuclear power plant, a three-dimensional SIMPLE-algorithm based hydrodynamic solver CUPID-S has been developed. As governing equations, it adopts a two-fluid three-field model for the two-phase flows. The three fields represent a continuous liquid, a dispersed droplets, and a vapour field. The governing equations are discretized by a finite volume method on an unstructured grid to handle the geometrical complexity of the nuclear reactors. The phasic momentum equations are coupled and solved with a sparse block Gauss-Seidel matrix solver to increase a numerical stability. The pressure correction equation derived by summing the phasic volume fraction equations is applied on the unstructured mesh in the context of a cell-centered co-located scheme. This paper presents the numerical method and the preliminary results of the calculations.

  • PDF