• Title/Summary/Keyword: Multi-Angle Camera

Search Result 56, Processing Time 0.031 seconds

Layered Depth Image Representation And H.264 Encoding of Multi-view video For Free viewpoint TV (자유시점 TV를 위한 다시점 비디오의 계층적 깊이 영상 표현과 H.264 부호화)

  • Shin, Jong Hong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.2
    • /
    • pp.91-100
    • /
    • 2011
  • Free viewpoint TV can provide multi-angle view point images for viewer needs. In the real world, But all angle view point images can not be captured by camera. Only a few any angle view point images are captured by each camera. Group of the captured images is called multi-view image. Therefore free viewpoint TV wants to production of virtual sub angle view point images form captured any angle view point images. Interpolation methods are known of this problem general solution. To product interpolated view point image of correct angle need to depth image of multi-view image. Unfortunately, multi-view video including depth image is necessary to develop a new compression encoding technique for storage and transmission because of a huge amount of data. Layered depth image is an efficient representation method of multi-view video data. This method makes a data structure that is synthesis of multi-view color and depth image. This paper proposed enhanced compression method using layered depth image representation and H.264/AVC video coding technology. In experimental results, confirmed high compression performance and good quality reconstructed image.

Improved Object Recognition using Multi-view Camera for ADAS (ADAS용 다중화각 카메라를 이용한 객체 인식 향상)

  • Park, Dong-hun;Kim, Hakil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.573-579
    • /
    • 2019
  • To achieve fully autonomous driving, the perceptual skills of the surrounding environment must be superior to those of humans. The $60^{\circ}$ angle, $120^{\circ}$ wide angle cameras, which are used primarily in autonomous driving, have their disadvantages depending on the viewing angle. This paper uses a multi-angle object recognition system to overcome each of the disadvantages of wide and narrow-angle cameras. Also, the aspect ratio of data acquired with wide and narrow-angle cameras was analyzed to modify the SSD(Single Shot Detector) algorithm, and the acquired data was learned to achieve higher performance than when using only monocular cameras.

Multi-tracer Imaging of a Compton Camera (다중 추적자 영상을 위한 컴프턴 카메라)

  • Kim, Soo Mee
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.18-27
    • /
    • 2015
  • Since a Compton camera has high detection sensitivity due to electronic collimation and a good energy resolution, it is a potential imaging system for nuclear medicine. In this study, we investigated the feasibility of a Compton camera for multi-tracer imaging and proposed a rotating Compton camera to satisfy Orlov's condition for 3D imaging. Two software phantoms of 140 and 511 keV radiation sources were used for Monte-Carlo simulation and then the simulation data were reconstructed by listmode ordered subset expectation maximization to evaluate the capability of multi-tracer imaging in a Compton camera. And the Compton camera rotating around the object was proposed and tested with different rotation angle steps for improving the limited coverage of the fixed conventional Compton camera over the field-of-view in terms of histogram of angles in spherical coordinates. The simulation data showed the separate 140 and 511 keV images from simultaneous multi-tracer detection in both 2D and 3D imaging and the number of valid projection lines on the conical surfaces was inversely proportional to the decrease of rotation angle. Considering computation load and proper number of projection lines on the conical surface, the rotation angle of 30 degree was sufficient for 3D imaging of the Compton camera in terms of 26 min of computation time and 5 million of detected event number and the increased detection time can be solved with multiple Compton camera system. The Compton camera proposed in this study can be effective system for multi-tracer imaging and is a potential system for development of various disease diagnosis and therapy approaches.

Analysis and Evaluation of Multi-view UCV(User Created Video) Service through Adjusting Camera Angle (카메라 앵글 조정 방식을 통한 다시점 UCV(User Created Video) 서비스 분석과 평가)

  • Sung, Bokyung;Ko, Ilju
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.39-47
    • /
    • 2014
  • Fast advancement and dynamic diffusion of Smart device make big change to personal user. They have been extended from consumer only watching video to prosumer recording and sharing User Created Video(UCV). With this reason, as a platform for various kind of content service. Especially, UCVs for the purpose of sharing experience are recorded from same event on limited time and space by some people. These are also produced by various cameras that has each angle similar like broadcasting videos. In this paper, we present multi-view characteristic of UCV and propose Multi-view UCV service that is watching UCVs from same event through adjusting camera angle. Through user satisfaction survey, we knew that adjusting camera angle is preferred for watching UCV including overlapping part more than linear watching.

The phase angle dependences of Reflectance on Asteroid (25143) Itokawa from the Hayabusa Spacecraft Multi-band Imaging Camera(AMICA)

  • Lee, Mingyeong;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.61.3-62
    • /
    • 2015
  • Remote-sensing observation is one of the observation methods that provide valuable information, such as composition and surface physical conditions of solar system objects. The Hayabusa spacecraft succeeded in the first sample returning from a near-Earth asteroid, (25143) Itokawa. It has established a ground truth technique to connect between ordinary chondrite meteorites and S-type asteroids. One of the scientific observation instruments that Hayabusa carried, Asteroid Multi-band Imaging Camera(AMICA) has seven optical-near infrared filters (ul, b, v, w, x, p, and zs), taking more than 1400 images of Itokawa during the rendezvous phase. The reflectance of planetary body can provide valuable information of the surface properties, such as the optical aspect of asteroid surface at near zero phase angle (i.e. Sun-asteroid-observer's angle is nearly zero), light scattering on the surface, and surface roughness. However, only little information of the phase angle dependences of the reflectance of the asteroid is known so far. In this study, we investigated the phase angle dependences of Itokawa's surface to understand the surface properties in the solar phase angle of $0^{\circ}-40^{\circ}$ using AMICA images. About 700 images at the Hayabusa rendezvous phase were used for this study. In addition, we compared our result with those of several photometry models, Minnaert model, Lommel-Seeliger model, and Hapke model. At this conference, we focus on the AMICA's v-band data to compare with previous ground-based observation researches.

  • PDF

A 2-D Image Camera Calibration using a Mapping Approximation of Multi-Layer Perceptrons (다층퍼셉트론의 정합 근사화에 의한 2차원 영상의 카메라 오차보정)

  • 이문규;이정화
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.487-493
    • /
    • 1998
  • Camera calibration is the process of determining the coordinate relationship between a camera image and its real world space. Accurate calibration of a camera is necessary for the applications that involve quantitative measurement of camera images. However, if the camera plane is parallel or near parallel to the calibration board on which 2 dimensional objects are defined(this is called "ill-conditioned"), existing solution procedures are not well applied. In this paper, we propose a neural network-based approach to camera calibration for 2D images formed by a mono-camera or a pair of cameras. Multi-layer perceptrons are developed to transform the coordinates of each image point to the world coordinates. The validity of the approach is tested with data points which cover the whole 2D space concerned. Experimental results for both mono-camera and stereo-camera cases indicate that the proposed approach is comparable to Tsai's method[8]. Especially for the stereo camera case, the approach works better than the Tsai's method as the angle between the camera optical axis and the Z-axis increases. Therefore, we believe the approach could be an alternative solution procedure for the ill -conditioned camera calibration.libration.

  • PDF

Development Process on the Control Software for Camera and Grating Articulation System Prototype (CGAS-P) of the Giant Magellan Telescope Multi-Object Astronomical and cosmological Spectrograph (GMACS)

  • Ji, Tae-Geun;Cook, Erika;Kelly, Evan;DePoy, Darren L.;Marshall, Jennifer;Lee, Hye-In;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.46.3-46.3
    • /
    • 2019
  • We present the control software and its development process for a prototype of the Camera and Grating Articulation System (CGAS) for GMACS, a wide-field, multi-object, moderate-resolution optical spectrograph for the Giant Magellan Telescope (GMT). The CGAS prototype is currently designed for the camera articulation controller as a miniature model of the GMACS. The camera articulation package (CAP) is a software that controls two stepper motors to adjust the camera angle. The package is developed using Visual C++ and runs on Windows 10. We discuss the architectural design and communication route between the high-end user software and the electronics hardware.

  • PDF

Three-Dimensional Measurement of Moving Surface Using Circular Dynamic Stereo

  • Lee, Man-Hyung;Hong, Suh-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.101.3-101
    • /
    • 2001
  • By setting a refractor with a certain angle against the optical axis of the CCD camera lens, the image of a measuring point recorded on the image plane is displaced by the corresponding amounts related to the distance between the camera and the measuring point. When the refractor that keeps the angle against the optical axis is rotated physically at high speed during the exposure of the camera, the image of a measuring point draws an annular streak. Since the size of the annular streak is inversely proportional to the distance between the camera and the measuring point, the 3D position of the measuring point can be obtained by processing the streak. In this paper, for one of the applications of our system, the measurement of a moving surface is introduced. In order to measure the moving surface, multi laser spots are projected on the surface of object. Each position of ...

  • PDF

Multi-robot Formation based on Object Tracking Method using Fisheye Images (어안 영상을 이용한 물체 추적 기반의 한 멀티로봇의 대형 제어)

  • Choi, Yun Won;Kim, Jong Uk;Choi, Jeong Won;Lee, Suk Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.547-554
    • /
    • 2013
  • This paper proposes a novel formation algorithm of identical robots based on object tracking method using omni-directional images obtained through fisheye lenses which are mounted on the robots. Conventional formation methods of multi-robots often use stereo vision system or vision system with reflector instead of general purpose camera which has small angle of view to enlarge view angle of camera. In addition, to make up the lack of image information on the environment, robots share the information on their positions through communication. The proposed system estimates the region of robots using SURF in fisheye images that have $360^{\circ}$ of image information without merging images. The whole system controls formation of robots based on moving directions and velocities of robots which can be obtained by applying Lucas-Kanade Optical Flow Estimation for the estimated region of robots. We confirmed the reliability of the proposed formation control strategy for multi-robots through both simulation and experiment.

Intelligent Control for the Tracing Mobile Vehicle Using Fuzzy Logic (퍼지 논리를 이용한 추종 Mobile Vehicle의 지능적 Control 구현)

  • 최우경;서재용;김성현;전홍태
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.119-122
    • /
    • 2002
  • The paper proposed the intelligent inference method which keeps MV(Mobile vehicle) a little way off from men and makes it follow them using fuzzy controller Recognizing positions of MV and Men and distance between them was used to infer movement angle and speed of the MV with multi-ultrasonic sensor and USB camera The very important thing Is that the MV needs to obtain surrounding Information from the sensor and the camera, then It needs to represent those circumstances MV was controlled by inference from the speed and angle which are obtained from sensor and camera. Traveling simulation with a real MV was performed repeatedly to verify the usefulness of the fuzzy logic algorithm which was proposed in this paper. And a successful result of the experiment demonstrated the excellence of the fuzzy logic controller.

  • PDF