• Title/Summary/Keyword: Multi-Agent Simulation (MAS)

Search Result 16, Processing Time 0.024 seconds

A comparative Study for dispersion model in evacuation plan by using MAS-based evacuation simulation (MAS 기반 피난시뮬레이션을 이용한 분산대피 비교 연구)

  • Jang, Jae-Soon;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Smoke is one of the most critical factor when escaping from the fire since it reduces visibility and interrupts finding emergency exit lights. Therefore, it is recommended that an evacuation simulation program should incorporate the smoke factor. In addition, it is suggested that the program should include not only the unilateral damage by the smoke but also the detour evacuation by risk communication. In this study, MAS (Multi Agent System)-based simulation program which incorporates the reduced walking speed by smoke and adopts the dispersion evacuation logic during escaping from the fire. To make comparison, a commercial evacuation program, Pathfinder was used. It was found that the simulation results of MAS (Multi Agent System)-based program is better than Pathfinder in terms of safe evacuation. It means that evacuation simulation need a additional evaluation categories that include not only quick evacuation time but also safe evacuee number.

Research on Finite-Time Consensus of Multi-Agent Systems

  • Chen, Lijun;Zhang, Yu;Li, Yuping;Xia, Linlin
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.251-260
    • /
    • 2019
  • In order to ensure second-order multi-agent systems (MAS) realizing consensus more quickly in a limited time, a new protocol is proposed. In this new protocol, the gradient algorithm of the overall cost function is introduced in the original protocol to enhance the connection between adjacent agents and improve the moving speed of each agent in the MAS. Utilizing Lyapunov stability theory, graph theory and homogeneity theory, sufficient conditions and detailed proof for achieving a finite-time consensus of the MAS are given. Finally, MAS with three following agents and one leading agent is simulated. Moreover, the simulation results indicated that this new protocol could make the system more stable, more robust and convergence faster when compared with other protocols.

Application of Multi-agent Reinforcement Learning to CELSS Material Circulation Control

  • Hirosaki, Tomofumi;Yamauchi, Nao;Yoshida, Hiroaki;Ishikawa, Yoshio;Miyajima, Hiroyuki
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.145-150
    • /
    • 2001
  • A Controlled Ecological Life Support System(CELSS) is essential for man to live a long time in a closed space such as a lunar base or a mars base. Such a system may be an extremely complex system that has a lot of facilities and circulates multiple substances,. Therefore, it is very difficult task to control the whole CELSS. Thus by regarding facilities constituting the CELSS as agents and regarding the status and action as information, the whole CELSS can be treated as multi-agent system(MAS). If a CELSS can be regarded as MAS the CELSS can have three advantages with the MAS. First the MAS need not have a central computer. Second the expendability of the CELSS increases. Third, its fault tolerance rises. However it is difficult to describe the cooperation protocol among agents for MAS. Therefore in this study we propose to apply reinforcement learning (RL), because RL enables and agent to acquire a control rule automatically. To prove that MAS and RL are effective methods. we have created the system in Java, which easily gives a distributed environment that is the characteristics feature of an agent. In this paper, we report the simulation results for material circulation control of the CELSS by the MAS and RL.

  • PDF

Discrete-Time State Feedback Algorithm for State Consensus of Uncertain Homogeneous Multi-Agent Systems (불확실성을 포함한 다 개체 시스템의 상태 일치를 위한 이산 시간 출력 궤환 협조 제어 알고리즘)

  • Yoon, Moon-Chae;Kim, Jung-Su;Back, Juhoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.390-397
    • /
    • 2013
  • This paper presents a consensus algorithm for uMAS (uncertain Multi-Agent Systems). Unlike previous results in which only nominal models for agents are considered, it is assumed that the uncertain agent model belongs to a known polytope set. In the middle of deriving the proposed algorithm, a convex set is found which includes all uncertainties in the problem using convexity of the polytope set. This set plays an important role in designing the consensus algorithm for uMAS. Based on the set, a consensus condition for uMAS is proposed and the corresponding consensus design problem is solved using LMI (Linear Matrix Inequality). Simulation result shows that the proposed consensus algorithm successfully leads to consensus of the state of uMAS.

A Study for Evacuation Assistance to Vulnerable People by MAS Based Evacuation Simulation (MAS 기반 대피시뮬레이션을 활용한 안전약자 대피지원 개선방안 연구)

  • Jung, Tae Ho;Park, Sang Hyun;Jang, Jae Soon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.121-127
    • /
    • 2017
  • Recently, many patients in a hospital are threatened life by fire disaster. Because many patients like vulnerable people have more evacuation problem than ordinary person. So a patient who can escape by oneself with walking assistance device like crutches or wheelchair and another patient who can't escape by oneself are should be supported safety technologies and service. Earlier research of 'hospital evacuation' led by actual experiments or computer evacuation simulation. Actual experiment is effective to gain credibility of result but it is difficult for patients to experiment repeatedly and it requires consideration for spatial problem and economic problems. Although computer evacuation simulation have been used to solve these problems, almost have concluded only results based on velocity without evacuation device. In this study, evacuation results with support device application or not are analysed used by computer evacuation simulation based on MAS(Multi Agent System). As a result, it is drawn through proof of efficiency of evacuation device in the vertical space like stairs that can improve the evacuation plan for vulnerable people in the hospital.

Investigating the Effect of Both Team Diversity and Task Difficulty on Team Creativity : Multi-Agent Simulation Approach (팀 다양성과 과업난이도가 팀 창의성에 미치는 영향 : 다중 에이전트 시뮬레이션 접근방법을 중심으로)

  • Chae, Seong Wook;Seo, Young Wook;Lee, Kun Chang
    • Korean Management Science Review
    • /
    • v.32 no.2
    • /
    • pp.111-124
    • /
    • 2015
  • In the management literature, it has been widely accepted among both researchers and practitioners that the level of team creativity is significantly related to the organizational performance. Besides, researchers posited with confidence that team diversity and task difficulty would affect team creativity through team members' activities of exploration and exploitation. However, empirical approaches to proving this belief suffered from lack of real data and proper methods as well. To tackle the research void like this, we propose a multi-agent simulation (MAS) mechanism. By adopting a set of parameters which validity were proven in the related literature, we conducted a series of experiments in the environment of the MAS platform named NetLogo. There sults suggest that managers can differentiate team diversity strategies according to task difficulty. In the case of a difficult task, managers need to increase team diversity so that their teams can maximize team creativity through rigorous exploration and exploitation. It is desirable to maintain an average level of team diversity when performing an easy task.

A Study on the Performance Evaluation of G2B Procurement Process Innovation by Using MAS: Korea G2B KONEPS Case (멀티에이전트시스템(MAS)을 이용한 G2B 조달 프로세스 혁신의 효과평가에 관한 연구 : 나라장터 G2B사례)

  • Seo, Won-Jun;Lee, Dae-Cheor;Lim, Gyoo-Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.157-175
    • /
    • 2012
  • It is difficult to evaluate the performance of process innovation of e-procurement which has large scale and complex processes. The existing evaluation methods for measuring the effects of process innovation have been mainly done with statistically quantitative methods by analyzing operational data or with qualitative methods by conducting surveys and interviews. However, these methods have some limitations to evaluate the effects because the performance evaluation of e-procurement process innovation should consider the interactions among participants who are active either directly or indirectly through the processes. This study considers the e-procurement process as a complex system and develops a simulation model based on MAS(Multi-Agent System) to evaluate the effects of e-procurement process innovation. Multi-agent based simulation allows observing interaction patterns of objects in virtual world through relationship among objects and their behavioral mechanism. Agent-based simulation is suitable especially for complex business problems. In this study, we used Netlogo Version 4.1.3 as a MAS simulation tool which was developed in Northwestern University. To do this, we developed a interaction model of agents in MAS environment. We defined process agents and task agents, and assigned their behavioral characteristics. The developed simulation model was applied to G2B system (KONEPS: Korea ON-line E-Procurement System) of Public Procurement Service (PPS) in Korea and used to evaluate the innovation effects of the G2B system. KONEPS is a successfully established e-procurement system started in the year 2002. KONEPS is a representative e-Procurement system which integrates characteristics of e-commerce into government for business procurement activities. KONEPS deserves the international recognition considering the annual transaction volume of 56 billion dollars, daily exchanges of electronic documents, users consisted of 121,000 suppliers and 37,000 public organizations, and the 4.5 billion dollars of cost saving. For the simulation, we analyzed the e-procurement of process of KONEPS into eight sub processes such as 'process 1: search products and acquisition of proposal', 'process 2 : review the methods of contracts and item features', 'process 3 : a notice of bid', 'process 4 : registration and confirmation of qualification', 'process 5 : bidding', 'process 6 : a screening test', 'process 7 : contracts', and 'process 8 : invoice and payment'. For the parameter settings of the agents behavior, we collected some data from the transactional database of PPS and some information by conducting a survey. The used data for the simulation are 'participants (government organizations, local government organizations and public institutions)', 'the number of bidding per year', 'the number of total contracts', 'the number of shopping mall transactions', 'the rate of contracts between bidding and shopping mall', 'the successful bidding ratio', and the estimated time for each process. The comparison was done for the difference of time consumption between 'before the innovation (As-was)' and 'after the innovation (As-is).' The results showed that there were productivity improvements in every eight sub processes. The decrease ratio of 'average number of task processing' was 92.7% and the decrease ratio of 'average time of task processing' was 95.4% in entire processes when we use G2B system comparing to the conventional method. Also, this study found that the process innovation effect will be enhanced if the task process related to the 'contract' can be improved. This study shows the usability and possibility of using MAS in process innovation evaluation and its modeling.

A Study for Optimal Evacuation Simulation by Artificial Intelligence Evacuation Guidance Application (인공지능 피난유도설비 적용에 따른 최적 대피시뮬레이션 연구)

  • Jang, Jae-Soon;Kong, Il-Chean;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.118-122
    • /
    • 2013
  • For safe evacuation in the fire disaster, the evacuees must find the exit and evacuate quickly. Especially, if the evacuees don't know the location of the exit, they have to depend on the evacuation guidance system. Because the more smoke spread, the less visibility is decreasing, it is difficult to find the way to the exit by the naked eye. For theses reasons, the evacuation guidance system is highly important. However, the evacuation guidance system without change of direction has the risk that introduce to the dangerous area. In the evacuation safety assessment scenario by the evacuation simulation has the same problem. Because the evacuee in the simulation evacuate by the shortest route to the exit, the simulation result is same like the evacuation without the evacuation guidance system. In this study, it was used with MAS (Multi Agent System)-based simulation program including the evacuation guidance system to implement the change of evacuation by fire. Using this method, confidence of evacuation safety assessment can be increase.

A Multiagent-Based Hybrid Power Control and Management of Distributed Power Sources

  • Yoon, Gi-Gab;Hong, Won-Pyo;Lee, Ki-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.70-81
    • /
    • 2011
  • In this paper, a multi-agent control system for DC-coupled photovoltaic (PV), fuel cell (FC), ultracapacitor(UC) and battery hybrid power system is studied for commercial buildings & apartment buildings microgrid. In this proposed system, the PV system provides electric energy to the electrolyzer to produce hydrogen for future use and transfer to the load side, if possible. Whenever the PV system cannot completely meet load demands, the FC system provides power to meet the remaining load. A multi-agent system based-power management and control algorithm is proposed for the hybrid power system by taking into account the characteristics of each power source. The main works of this paper are hybridization of alternate energy sources with FC systems using long and short storage strategies to build the multi-agent control system with pragmatic design, and a dynamic model proposed for a PV/FC/UC/battery bank hybrid power generation system. A dynamic simulation model for the hybrid power system has been developed using Matlab/Simulink, SimPowerSystems and Stateflow. Simulation results are also presented to demonstrate the effectiveness of the proposed multi-agent control and management system for building microgrid.

Discrete-Time Output Feedback Algorithm for State Consensus of Multi-Agent Systems (다 개체 시스템의 상태 일치를 위한 이산 시간 출력 궤환 협조 제어 알고리즘)

  • Kim, Jae-Yong;Lee, Jin-Young;Kim, Jung-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.625-631
    • /
    • 2011
  • This paper presents a discrete-time output feedback consensus algorithm for Multi-Agent Systems (MAS). Under the assumption that an agent is aware of the relative state information about its neighbors, a state feedback consensus algorithm is designed based on Linear Matrix Inequality (LMI) method. In general, however, it is possible to obtain its relative output information rather than the relative state information. To reconcile this problem, an Unknown Input Observer (UIO) is employed in this paper. To this end, first it is shown that the relative state information can be estimated using the UIO and the measured relative output information. Then a certainty-equivalence type output feedback consensus algorithm is proposed by combining the LMI-based state feedback consensus algorithm with the UIO. Finally, simulation results are given to illustrate that the proposed method successfully achieves the state consensus.