조속한 주택시장의 안정화가 우리나라의 국가적 과제가 되었다. 이를 위해 주택시장의 특성을 반영하며 새로운 정책이 주택시장에 미치는 영향을 분석할 수 있는 도구의 개발이 필요하다. 따라서 본 연구는 진주시를 대상으로 멀티에이전트 주택시장모형과 시뮬레이션시스템을 개발하고자 한다. 먼저 진주시의 지역적 주택시장을 분석한 다음, 주택선택모형, 헤도닉주택가격모형, 주거입지선택모형 등 3개의 하위 모형으로 구성된 멀티에이전트 모델을 개발하였다. 또한 시뮬레이션 시스템을 개발하기 위해 $150{\times}100$개의 셀로 구성된 가상공간을 설정하고 모형을 프로그래밍하였다. 이 시스템으로 도시개발이 주거 입지패턴에 미치는 영향을 분석하는 시뮬레이션을 실시해 보았다. 그 결과 단순히 도로, 상업시설, 편의시설의 입지만으로는 주거가 쉽게 유입되지 않음을 알 수 있었다. 대신에 녹지를 공급함으로써 매우 많은 주거입지를 유도할 수 있어 도시개발에서 인프라와 환경적 요인이 동시에 정비되어야 한다는 시사점을 발견할 수 있었다. 결론적으로 본 연구에서 개발한 멀티에이전트 모형과 시뮬레이션 시스템은 원활하게 작동하며, 다양한 정책실험과 주택시장의 분석에 유용하게 활용할 수 있음을 확인하였다.
This paper presents a consensus algorithm for uMAS (uncertain Multi-Agent Systems). Unlike previous results in which only nominal models for agents are considered, it is assumed that the uncertain agent model belongs to a known polytope set. In the middle of deriving the proposed algorithm, a convex set is found which includes all uncertainties in the problem using convexity of the polytope set. This set plays an important role in designing the consensus algorithm for uMAS. Based on the set, a consensus condition for uMAS is proposed and the corresponding consensus design problem is solved using LMI (Linear Matrix Inequality). Simulation result shows that the proposed consensus algorithm successfully leads to consensus of the state of uMAS.
시뮬레이션이란 실세계의 다양한 객체들의 구조와 행위에 대한 자료를 수집하여 모델링하고 이를 컴퓨터 프로그램으로 모의 실험함을 말하며, 주요 기반기술들로서 DEVS (Discrete Event System Specification) 형식론을 비롯하여 페트리 넷 이나 구조적 오토마타 등이 연구되고 있다. 그러나 이러한 시뮬레이션의 연구영역이 보다 다양화되고 복잡하게 발전됨에 따라, 최근에는 인공지능의 지능형 에이전트기법을 도입하여 해결하는 연구가 활성화되고 있다. 본 연구에서는 시뮬레이션에 관한 모의실험을 보다 원활히 수행하기 위해서 지능형 멀티 에이전트기반의 시뮬레이션 도구를 개발하고자 한다. 이러한 도구의 특징은 첫째, 인공지능의 기능들을 라이브러리로 제공할 수 있고, 둘째, 유한상태기계(FSM)기반으로 에이전트 시스템을 설계하여, 시뮬레이션의 설계 모델을 보다 단순화 할 수 있는 장점이 있으며, 셋째, 모델러, 스크립터, 시뮬레이터등의 보조툴들을 제공함으로서 사용자들이 보다 편리하게 시뮬레이션 시스템을 개발할 수 있는 프레임워크를 제공한다. 시스템의 구성은 코어 시뮬레이션 엔진 유틸리티, 그리고 기타 보조툴들로 구성하였으며, 현재까지 개발된 시스템으로 몇 가지 영역을 대상으로 실험을 하였고 그 결과를 기술하였다.
현대사회의 도시화 추세가 지속됨에 따라 인구의 집중으로 주거환경에 대한 도시문제의 중요성이 대두되고 있다. 다양한 도시문제 중에서 대표적인 문제 중 하나는 쓰레기 문제로 시민들의 주거환경 악화의 원인이 되며 시정 만족도에 대해 직접적으로 영향을 미치는 요인이다. 이와 같은 쓰레기 문제는 단순히 주거지역의 쓰레기 배출량에 대한 분석으로는 정확히 예측할 수 없으며 쓰레기의 주거지역에 분포하고 있는 거주민의 생활양식과 특징에 대한 분석이 필요하다. 본 연구에서는 주거지역 내의 거주민의 분포에 따라 발생할 수 있는 쓰레기 문제와 이에 대한 만족도 분석을 수행하기 위하여 이산사건 시스템 형식론을 활용한 에이전트 기반 거주민 모델링과 시뮬레이션 환경을 제안한다. 제안하는 연구는 주거민의 시계열적인 특성을 표현하기 위하여 원자모델을 사용하였으며 시뮬레이션 모델의 재사용성을 증대시키기 위한 결합모델을 사용하여 다가구와 다가구 주택을 모의하였다. 또한, 본 연구는 다가구 주택지역에 대한 시뮬레이션 모델링을 진행하고, 시뮬레이션을 수행하였다. 연구결과로 다가구 주택지역의 시뮬레이션에서는 거주민의 특성을 고려한 결과와 그렇지 않은 결과 사이에 뚜렷한 차이점을 발견할 수 있었으며 지역 문화적 특성과 시간적 특성을 고려한 시뮬레이션이 필요함을 확인할 수 있었다.
In this paper we investigate the role that warfare played In the formation of the network of alliances between sites that are associated with the formation of the state in the Valley of Oaxaca, Mexico. A model of state formation proposed by Marcos and Flannery (1996) is used as the basis for an agent-based simulation model. Agents reside in sites and their actions are constrained by knowledge extracted from the Oaxaca Surface Archaeological Survey (Kowalewski 1989). The simulation is run with two different sets of constraint rules for the agents. The first set is based upon the raw data collected in the surface survey. This represents a total of 79 sites and constitutes a minimal level of warfare (raiding) in the Valley. The other site represents the generalization of these constraints to sites with similar locational characteristics. This set corresponds to 987 sites and represents a much more active role for warfare in the Valley. The rules were produced by a data mining technique, Decision Trees, guided by Genetic Algorithms. Simulations were run using the two different rule sets and compared with each other and the archaeological data for the Valley. The results strongly suggest that warfare was a necessary process in the aggregations of resources needed to support the emergence of the state in the Valley.
본 연구는 유니티 게임 엔진과 유니티 ML-Agents를 이용하여 강화 학습을 통해 목표 추적 및 이동을 지능적으로 수행하는 에이전트를 구현하는 데 목적이 있다. 본 연구에서는 에이전트의 효과적인 강화 학습 훈련 방식을 모색하기 위해 단일 학습 시뮬레이션 환경에서 하나의 에이전트를 트레이닝하는 방식과 다중 학습 시뮬레이션 환경에서 여러 에이전트들을 동시에 병렬 트레이닝하는 방식 간의 학습 성능을 비교하기 위한 실험을 수행하였다. 실험 결과를 통해 병렬트레이닝 방식이 싱글 트레이닝 방식보다 학습 속도 측면에서 약 4.9배 빠르고, 학습 안정성 측면에서도 더 안정적으로 효과적인 학습이 일어남을 확인할 수 있었다.
This paper proposes a new fault restoration method which adopts the recloser as top agent to release the problems of the data concentration and fault processing delay of the existing DAS(distribution Automation System) under the ubiquitous distribution system. In proposed method, top agent collects the data based on the multi-casting communication with the tie switches of the interconnection point, and then selects a closed switch(tie switch) to transfer the sound outage load to other feeders based on the heuristic search strategy step by step until the load transfer work is finished. Here, a new heuristic rule is developed which can guarantee the relational load balancing and line loss from the collected voltage data. Finally, the several faults are simulated for typical multi-section and multi-interconnection distribution system to prove the effectiveness of the proposed strategy, in particular, for each simulation cases, the load balancing index and line loss index of the obtained solution from the proposed method is compared with those of all of feasible solutions.
완성차의 빠르고 안전한 납기를 위해 자동차 업계는 많은 노력을 기울여 왔다. 생산 후 선적까지 완성차가 조립공장내에 체재하는 시간의 감축을 통해 총 주문시간을 줄일 수 있음과 동시에 총수송비용 또한 줄일 수 있다. 전통적인 선적계획법들은 조립공장내에서 발생하는 동적인 사건들을 다루는데 한계가 있다. 본 논문은 이러한 선적과정중에 발생할 수 있는 동적 사건들을 해결하는 다중 에이전트 기반 선적 방법을 제시하고 있다. 시뮬레이션을 이용한 실험 결과를 통해 이러한 방법이 주문시간, 작업효율, 품질 및 수송효율의 증진을 가져올 수 있음을 보였다.
실내 공간과 같이 마이크로한 스케일에서의 분석을 위해 다양한 보행시뮬레이션 모델들이 연구 되어 왔으며, 이 중에는 social force 모델과 floor field 모델이 주목을 받는다. 이 중 연산이 복잡한 social force 모델보다는 CA 기반의 floor field 모델이 컴퓨터 시뮬레이션에 더 적합한 모델이라고 할 수 있다. 그러나 Kirchner 등이 제안한 floor field 모델에서는 dynamic field의 연산 시 자신의 dynamic 값에도 영향을 받을 수 밖에 없는 단점을 가지고 있으며, 본 연구에서는 이를 개선한 알고리즘을 제안한다. 본 연구에서는 dynamic field의 데이터 구조를 변경함으로써 자신의 dynamic 값은 배제한 다른 에이젼트의 영향만을 받도록 하였으며, dynamic 값의 초기값을 할당하는 문제도 현실적으로 변경하였다. 본 연구에서 제시된 알고리즘을 테스트하는 데에는 공간 DBMS에 저장된 실제 3차원 건물모델을 사용하여 추후 실내 센서를 이용한 실시간 대피 시스템에 적용할 수 있는 기반이 되도록 하였다.
한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
/
pp.59-64
/
2001
The robot soccer simulation game is a dynamic multi-agent environment. In this paper we suggest a new reinforcement learning approach to each agent's dynamic positioning in such dynamic environment. Reinforcement learning is the machine learning in which an agent learns from indirect, delayed reward an optimal policy to chose sequences of actions that produce the greatest cumulative reward. Therefore the reinforcement learning is different from supervised learning in the sense that there is no presentation of input pairs as training examples. Furthermore, model-free reinforcement learning algorithms like Q-learning do not require defining or learning any models of the surrounding environment. Nevertheless it can learn the optimal policy if the agent can visit every state- action pair infinitely. However, the biggest problem of monolithic reinforcement learning is that its straightforward applications do not successfully scale up to more complex environments due to the intractable large space of states. In order to address this problem. we suggest Adaptive Mediation-based Modular Q-Learning (AMMQL)as an improvement of the existing Modular Q-Learning (MQL). While simple modular Q-learning combines the results from each learning module in a fixed way, AMMQL combines them in a more flexible way by assigning different weight to each module according to its contribution to rewards. Therefore in addition to resolving the problem of large state effectively, AMMQL can show higher adaptability to environmental changes than pure MQL. This paper introduces the concept of AMMQL and presents details of its application into dynamic positioning of robot soccer agents.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.