• Title/Summary/Keyword: Multi-Access Memory System

Search Result 53, Processing Time 0.029 seconds

A 3D Memory System Allowing Multi-Access (다중접근을 허용하는 3차원 메모리 시스템)

  • 이형
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.9
    • /
    • pp.457-464
    • /
    • 2005
  • In this paper a 3D memory system that allows 17 access types at an arbitrary position is introduced. The proposed memory system is based on two main functions: memory module assignment function and address assignment function. Based on them, the memory system supports 17 access types: 13 Lines, 3 Rectangles, and 1 Hexahedron. That is, the memory system allows simultaneous access to multiple data in any access types at an arbitrary position with a constant interval. In order to allow 17 access types the memory system consists of memory module selection circuitry, data routing circuitry for READ/WRITE, and address calculation/routing circuitry In the point of view of a developer and a programmer, the memory system proposed in this paper supports easy hardware extension according to the applications and both of them to deal with it as a logical three-dimensional away In addition, multiple data in various across types can be simultaneously accessed with a constant interval. Therefore, the memory system is suitable for building systems related to ,3D applications (e.g. volume rendering and volume clipping) and a frame buffer for multi-resolution.

Design to Chip with Multi-Access Memory System and Parallel Processor for 16 Processing Elements of Image Processing Purpose (영상처리용 16개의 처리기를 위한 다중접근기억장치 및 병렬처리기의 칩 설계)

  • Lim, Jae-Ho;Park, Seong-Mi;Park, Jong-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1401-1408
    • /
    • 2011
  • This dissertation present a chip with Multi-Access Memory System(MAMS) and parallel processor for 16 Processing Elements of image processing purpose. MAMS is a kind of parallel access memory system and can simultaneously access to random pixel datas with eight types. It is possible to set a interval about pixel datas to access, too. The parallel processor built-in MAMS actually has been realized in 2003 but its performance fell short of a real time process for high-definition images. I designed a improved parallel processing system by means of addition and expansion of Memory Modules and Processing Elements of previous one. It is feasible to perform a Morphological Closing at the speed of 3 times of the previous one and 6 times of serial system.

A Study on Parallel Processing System for Automatic Segmentation of Moving Object in Image Sequences

  • Lee, Hyung;Park, Jong-Won
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.429-432
    • /
    • 2000
  • The new MPEG-4 video coding standard enables content-based functionalities. In order to support the philosophy of the MPEG-4 visual standard, each frame of video sequences should be represented in terms of video object planes (VOP’s). In other words, video objects to be encoded in still pictures or video sequences should be prepared before the encoding process starts. Therefore, it requires a prior decomposition of sequences into VOP’s so that each VOP represents a moving object. A parallel processing system is required an automatic segmentation to be processed in real-time, because an automatic segmentation is time consuming. This paper addresses the parallel processing: system for an automatic segmentation for separating moving object from the background in image sequences. The proposed parallel processing system comprises of processing elements (PE’s) and a multi-access memory system (MAMS). Multi-access memory system is a memory controller to perform parallel memory access with the variety of types: horizontal, vertical, and block access way. In order to realize these ways, a multi-access memory system consists of a memory module selection module, data routing modules, and an address calculation and routing module. The proposed system is simulated and evaluated by the CADENCE Verilog-XL hardware simulation package.

  • PDF

Pipelined Parallel Processing System for Image Processing (영상처리를 위한 Pipelined 병렬처리 시스템)

  • Lee, Hyung;Kim, Jong-Bae;Choi, Sung-Hyk;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.212-224
    • /
    • 2000
  • In this paper, a parallel processing system is proposed for improving the processing speed of image related applications. The proposed parallel processing system is fully synchronous SIMD computer with pipelined architecture and consists of processing elements and a multi-access memory system. The multi-access memory system is made up of memory modules and a memory controller, which consists of memory module selection module, data routing module, and address calculating and routing module, to perform parallel memory accesses with the variety of types: block, horizontal, and vertical access way. Morphological filter had been applied to verify the parallel processing system and resulted in faithful processing speed.

  • PDF

Design of Parallel Processor for Image Processing

  • No, Seok-Hwan;Park, Jong-Won
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.743-744
    • /
    • 2006
  • This paper presents implementation of parallel processing system for image processing. The parallel processing system proposed consisted of 16 processing elements, and multi-access memory system, and interface modules. The multi-access memory system we introduced is made up of a memory module selection, a data routing module, and an address calculation and routing module.

  • PDF

Architecture design for speeding up Multi-Access Memory System(MAMS) (Multi-Access Memory System(MAMS)의 속도 향상을 위한 아키텍처 설계)

  • Ko, Kyung-sik;Kim, Jae Hee;Lee, S-Ra-El;Park, Jong Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.6
    • /
    • pp.55-64
    • /
    • 2017
  • High-capacity, high-definition image applications need to process considerable amounts of data at high speed. Accordingly, users of these applications demand a high-speed parallel execution system. To increase the speed of a parallel execution system, Park (2004) proposed a technique, called MAMS (Multi-Access Memory System), to access data in several execution units without the conflict of parallel processing memories. Since then, many studies on MAMS have been conducted, furthering the technique to MAMS-PP16 and MAMS-PP64, among others. As a memory architecture for parallel processing, MAMS must be constructed in one chip; therefore, a method to achieve the identical functionality as the existing MAMS while minimizing the architecture needs to be studied. This study proposes a method of miniaturizing the MAMS architecture in which the architectures of the ACR (Address Calculation and Routing) circuit and MMS (Memory Module Selection) circuit, which deliver data in memories to parallel execution units (PEs), do not use the MMS circuit, but are constructed as one shift and conditional statements whose number is the same as that of memory modules inside the ACR circuit. To verify the performance of the realized architecture, the study conducted the processing time of the proposed MAMS-PP64 through an image correlation test, the results of which demonstrated that the ratio of the image correlation from the proposed architecture was improved by 1.05 on average.

Remote Cache Replacement Policy using Processor Locality in Multi-Processor System (다중 프로세서 시스템에서 프로세서 지역성을 이용한 원격 캐쉬 교체 정책)

  • Han Sang Yoon;Kwak Jong Wook;Jhang Seong Tae;Jhon Chu Shik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.541-556
    • /
    • 2005
  • The memory access latency of the system has been a primary factor of performance degradation in single-processor system and multi-processor system. The remote memory access latency takes a lot of overhead over the local memory access latency especially in the distributed shared-memory system. To resolve this problem, the multi-level cache architecture that contains a remote cache in the multi-processor system has been proposed. In this paper, we propose a new cache replacement policy that improves the performance of the multi-processor system with the remote cache. If the multi-level cache keeps the multi-level inclusion(MLI) property and uses the LRU(Least Recently Used) cache replacement policy, the LRU information of the higher-level cache(a processor cache) would be different with that of the lower-level cache(a remote cache). In this situation, the replacement of a remote cache line can induce the exchange of a processor cache line that is used by the processor. It is a main factor of performance degradation in a whole system. To alleviate this disadvantage of the LRU replacement polity, the new policy analyses tht processor's remote memory access pattern of each node and uses this information to reduce the number of invalidations of the useful cache line in the higher-level cache. The new replacement policy of the remote cache can improve the performance by $3.5\%$ in maximum and $2.5\%$ in average on SPLASH-2 benchmarks, compared to the general LRU cache replacement policy.

Application Behavior-oriented Adaptive Remote Access Cache in Ring based NUMA System (링 구조 NUMA 시스템에서 적응형 다중 그레인 원격 캐쉬 설계)

  • 곽종욱;장성태;전주식
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.9
    • /
    • pp.461-476
    • /
    • 2003
  • Due to the implementation ease and alleviation of memory bottleneck effect, NUMA architecture has dominated in the multiprocessor systems for the past several years. However, because the NUMA system distributes memory in each node, frequent remote memory access is a key factor of performance degradation. Therefore, efficient design of RAC(Remote Access Cache) in NUMA system is critical for performance improvement. In this paper, we suggest Multi-Grain RAC which can adaptively control the RAC line size, with respect to each application behavior Then we simulate NUMA system with multi-grain RAC using MINT, event-driven memory hierarchy simulator. and analyze the performance results. At first, with profile-based determination method, we verify the optimal RAC line size for each application and, then, we compare and analyze the performance differences among NUMA systems with normal RAC, with optimal line size RAC, and with multi-grain RAC. The simulation shows that the worst case can be always avoided and results are very close to optimal case with any combination of application and RAC format.

An Implementation of Pipelined Prallel Processing System for Multi-Access Memory System

  • Lee, Hyung;Cho, Hyeon-Koo;You, Dae-Sang;Park, Jong-Won
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.149-151
    • /
    • 2002
  • We had been developing the variety of parallel processing systems in order to improve the processing speed of visual media applications. These systems were using multi-access memory system(MAMS) as a parallel memory system, which provides the capability of the simultaneous accesses of image points in a line-segment with an arbitrary degree, which is required in many low-level image processing operations such as edge or line detection in a particular direction, and so on. But, the performance of these systems did not give a faithful speed because of asynchronous feature between MAMS and processing elements. To improve the processing speed of these systems, we have been investigated a pipelined parallel processing system using MAMS. Although the system is considered as being the single instruction multiple data(SIMD) type like the early developed systems, the performance of the system yielded about 2.5 times faster speed.

  • PDF

Protecting Memory of Process Using Mandatory Access Control (강제적 접근제어를 통한 프로세스 메모리 보호)

  • Shim, Jong-Ik;Park, Tae-Kyou;Kim, Jin-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1947-1954
    • /
    • 2011
  • There are various attacks such as tampering, bypassing and spoofing which are caused with system-wide vulnerabilities of Windows operating system. The underlying operating system is responsible for protecting application-space mechanisms against such attacks. This paper provides the implementation of mandatory access control known as multi-level security (MLS) rating with TCSEC-B1 level on th kernel of Windows$^{TM}$. By adding especially the protection feature against tampering memory of processes to the security kernel, this implementation meets the responsibility against system-wide vulnerabilities.