• Title/Summary/Keyword: Multi factor Model

Search Result 573, Processing Time 0.023 seconds

Shielding effect model and Signal Switching in the multi-layer interconnects (다층 배선에서 차폐효과 모델 및 스위칭에 미치는 영향)

  • 진우진;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1145-1148
    • /
    • 1998
  • New capacitance modeling and transient analysis for multi-layer interconnects with shielding effect are presented. The upper layer capacitances with under-layer shielding lines are represented by introducing a filling factor η which can be defined as the ratio of upper-layer line length to the total under-layer line width. The upper-layer effective self capacitances considering two extreme cases which the underlayer metals are assumed as a ground or as a Vdd are modeled. The signal transient analysis with shielding effect model is performed.

  • PDF

Magnetic Field Calculation and Multi-objective Optimization of Axial Flux Permanent Magnet Generator with Coreless Stator Windings

  • Zhu, Jun;Li, Shaolong;Song, Dandan;Han, Qiaoli;Li, guanghua
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1586-1595
    • /
    • 2018
  • For the problem that the complexity of 3-D modeling and multi parameter optimization, as well as the uncertainty of the winding factor of axial flux permanent magnet generator with coreless windings. The complex 3-D model was simplified into 2-D analytic model, and an analytical formula for the winding factor that adapting different coreless stator winding is proposed in this paper. The analytical solution for air-gap magnetic fields, no-load back EMF, electromagnetic torque, and efficiency are calculated by using this method. The multiple objective and multivariable optimization of the maximum fundamental and the minimum harmonic content of back EMF are performed by using response surface methodology. The proposed optimum design method was applied to make a generator. The generator was tested and the calculated results are compared with the proposed method, which show good agreements.

Stress Intensity Factor for Multi-Layered Material Under Polynomial Anti-Symmetric Loading (멱급수 반대칭하중을 받는 다층재 중앙균열의 응력세기계수)

  • 이강용;김성호;박문복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3219-3226
    • /
    • 1994
  • A model is constructed to evaluate the stress intensity factors for a center crack subjected to polynomial anti-symmetric loading in a layered material. A Fredholm integral equation is derived by Fourier integral transform method. The integral equation is numerically analyzed to evaluate the effects of the ratios of shear modulus, Poisson's ratio and crack length to layer thickness as well as the number of layers on the stress intensity factor. The stress intensity factors are approached to constant values as the number of layers increase and decrease as the polynomial power of the loading increase. In case of the E-glass/Epoxy composite, dimensionless stress intensity factor is affected by cracked-resin layer thickness.

Selection of Coupling Factor for Minimum Inductor Current Ripple in Multi-winding Coupled Inductor Used in Bidirectional DC-DC Converters

  • Kang, Taewon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.879-891
    • /
    • 2018
  • A bidirectional dc-dc converter is used in battery energy storage systems owing to the growing requirements of a charging and discharging mode of battery. The magnetic coupling of output or input inductors in parallel-connected multi modules of a bidirectional dc-dc converter is often utilized to reduce the peak-to-peak ripple size of the inductor current. This study proposes a novel design guideline to achieve minimal ripple size of the inductor current under bidirectional power flow. The newly proposed design guideline of optimized coupling factor is applicable to the buck and boost operation modes of a bidirectional dc-dc converter. Therefore, the coupling factor value of the coupled inductor does not have to be optimized separately for buck and boost operation modes. This new observation is explained using the theoretical model of coupled inductor and confirmed through simulation and experimental test.

The Analysis of SAW Filter Characteristics Using Ouasi-Static Approximation (Ouasi-Static 근사화에 의한 탄성표면과 필터의 특성 해석)

  • 이동도;정영지;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.4
    • /
    • pp.481-489
    • /
    • 1993
  • The charge distribution is calculated to analyze the quasi-static impedance of periodic interdigital transducer taking into account the effect of infinite neighboring electrodes. The charge distribution can be represented by the element factor and array factor. The radiation conductance, susceptance and static capacitance of the input and output IDT's with arbitrary voltages are obtained by the charge distribution. The impedance of apodized IDT, is analyzed by multi-track model in which IDT is represented by the parallel connection of the uniform tracks. The calculated input and output impedances are in good agreement with the experimental results.

  • PDF

Dynamic analysis of wind-vehicle-bridge system considering additional moments of non-uniform winds by wind shielding effect of multi-limb tower

  • Xu Han;Huoyue Xiang;Xuli Chen;Yongle Li
    • Wind and Structures
    • /
    • v.36 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • To evaluate the wind shielding effect of bridge towers with multiple limbs on high-speed trains, a wind tunnel test was conducted to investigate the aerodynamic characteristics of vehicles traversing multi-limb towers, which represented a combination of the steady aerodynamic coefficient of the vehicle-bridge system and wind environment around the tower. Subsequently, the analysis model of wind-vehicle-bridge (WVB) system considering the additional moments caused by lift and drag forces under nonuniform wind was proposed, and the reliability and accuracy of the proposed model of WVB system were verified using another model. Finally, the factors influencing the wind shielding effect of multi-limb towers were analyzed. The results indicate that the wind speed distributions along the span exhibit two sudden changes, and the wind speed generally decreases with increasing wind direction angle. The pitching and yawing accelerations of vehicles under nonuniform wind loads significantly increase due to the additional pitching and yawing moments. The sudden change values of the lateral and yawing accelerations caused by the wind shielding effect of multi-limb tower are 0.43 m/s2 and 0.11 rad/s2 within 0.4 s, respectively. The results indicate that the wind shielding effect of a multi-limb tower is the controlling factor in WVB systems.

An Improved Analytic Model for Power System Fault Diagnosis and its Optimal Solution Calculation

  • Wang, Shoupeng;Zhao, Dongmei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.89-96
    • /
    • 2018
  • When a fault occurs in a power system, the existing analytic models for the power system fault diagnosis could generate multiple solutions under the condition of one or more protective relays (PRs) and/or circuit breakers (CBs) malfunctioning, and/or an alarm or alarms of these PRs and/or CBs failing. Therefore, this paper presents an improved analytic model addressing the above problem. It takes into account the interaction between the uncertainty involved with PR operation and CB tripping and the uncertainty of the alarm reception, which makes the analytic model more reasonable. In addition, the existing analytic models apply the penalty function method to deal with constraints, which is influenced by the artificial setting of the penalty factor. In order to avoid the penalty factor's effects, this paper transforms constraints into an objective function, and then puts forward an improved immune clonal multi-objective optimization algorithm to solve the optimal solution. Finally, the cases of the power system fault diagnosis are served for demonstrating the feasibility and efficiency of the proposed model and method.

Analysis of ELF Magnetic Field Reduction Factor of Electric Power Transmission Line (송전 선로 극저주파 자기장 저감지수(FRF) 특성 해석)

  • Myung, Sung-Ho;Cho, Yeon-Gyu;Lee, Dong-Il;Lim, Yun-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.11 s.114
    • /
    • pp.1132-1142
    • /
    • 2006
  • This paper examined electric power transmission line models of reducing ELF(Extremely Low Frequency) magnetic field and analyzed the effects about models. In this research, FRF(Field Reduction Factor) of various models reducing magnetic field were analyzed compared to the horizontal 154 kV transmission line. As a result, the reduction ratio of magnetic field was almost proportioned to the compaction of phase-to-phase distance, and in case of diamond model and transposed model, magnetic field was able to be reduced nearly 50 %. It was analyzed that the magnetic field reduction ratio of triangle model was about 33 % and the magnetic field reduction ratio of split model was able to be reduced to 50 %. Especially, the magnetic field reduction ratio of multi split model could be reduced to 80 %.

Future Change Using the CMIP5 MME and Best Models: II. The Thermodynamic and Dynamic Analysis on Near and Long-Term Future Climate Change over East Asia (CMIP5 MME와 Best 모델의 비교를 통해 살펴본 미래전망: II. 동아시아 단·장기 미래기후전망에 대한 열역학적 및 역학적 분석)

  • Kim, Byeong-Hee;Moon, Hyejin;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.249-260
    • /
    • 2015
  • The changes in thermodynamic and dynamic aspects on near (2025~2049) and long-term (2075~2099) future climate changes between the historical run (1979~2005) and the Representative Concentration Pathway (RCP) 4.5 run with 20 coupled models which employed in the phase five of Coupled Model Inter-comparison Project (CMIP5) over East Asia (EA) and the Korean Peninsula are investigated as an extended study for Moon et al. (2014) study noted that the 20 models' multi-model ensemble (MME) and best five models' multi-model ensemble (B5MME) have a different increasing trend of precipitation during the boreal winter and summer, in spite of a similar increasing trend of surface air temperature, especially over the Korean Peninsula. Comparing the MME and B5MME, the dynamic factor (the convergence of mean moisture by anomalous wind) and the thermodynamic factor (the convergence of anomalous moisture by mean wind) in terms of moisture flux convergence are analyzed. As a result, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter and summer over EA. However, over the Korean Peninsula, the dynamic factor causes the lower increasing trend of precipitation in B5MME than the MME during the boreal winter, whereas the thermodynamic factor causes the higher increasing trend of precipitation in B5MME than the MME during the boreal summer. Therefore, it can be noted that the difference between MME and B5MME on the change in precipitation is affected by dynamic (thermodynamic) factor during the boreal winter (summer) over the Korean Peninsula.

Factors Affecting Patient Moving for Medical Service Using Multi-level Analysis (환자이동에 영향을 미치는 개인 및 병원요인 분석)

  • Kim, Sun Hee;Lee, Hae Jong;Lee, Kwang Soo;Shin, Hyun Woung
    • Korea Journal of Hospital Management
    • /
    • v.19 no.4
    • /
    • pp.9-20
    • /
    • 2014
  • The purpose of this study is to find out factors affecting patient moving to receive medical service. This study is analyzed by multi-level model with patient and hospital level by using SAS 9.3. Total number of patients is 600,000 persons for inpatients and 550,000 patients for outpatients. The degree of the factors, which is combined with personnel factor and hospital factor, can be analyzed by Intra-Class Correlation (ICC). The percentage of group(hospital) level variance of the total variance for out-bound moving case are 30.6% at inpatients, and 28.3% at outpatients. And the percentage of hospital level variance of the total variance for moving distance, are 26.7%, 32,5% respectively. Conclusionally, although the main factor of moving is patient level, hospital is also very important factor to make decision to go out-bound. It contributed to about 1/3 for hospital choice. And, when the one make decision, he will consider the hospital type, number of bed, and training institute in hospital level. Through this study to find out hospital factors affecting patient moving for medical service, it must be continued to find out which factors have more influence to choice the hospital among disease type after this.

  • PDF