• Title/Summary/Keyword: Multi Water Resources

Search Result 709, Processing Time 0.029 seconds

A Study on Standardization Method Establishment of Multi Water-Loop System using Multi Water Resources (다중수원을 활용한 멀티워터 루프시스템의 표준화방안 구축에 관한 연구)

  • Lee, Hyundong;Lee, Joonhyung;Kwak, Pilljae
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.109-117
    • /
    • 2014
  • Multi water-loop system is the efficient customer centered facilities of water supply by utilizing the multi water resources. Multi water-loop system is divided into various types. The system is classified potable and non-potable type. Mostly, the potable type utilizes surface water and ground water. However, the non-potable type utilize the multi water resources, such as rain water, sea water, reclaimed water, etc. Selective intake is possible when characteristics of region, physiographic condition and purpose of use are considered. For instance, downtown type, new-city type, agriculture type, island type are available. For development and application of these multi water-loop system, standardization is needed. For standardization, several methods are given; design principles, selection and composition method of multi water-loop system structure, BIM/GIS application method, safety inspection method. Consequently, a road map of design standardization method can be established. In this road map, there are three parts for the standardization of multi water-loop system. Three parts are the considerations, base material and ways of standardization. Design standardization become close when this road map followed by someone who plan the multi water-loop system. In this way, loop system's development is more efficient and economic. In hereafter research, each type's characteristic will be analysed and standardization methods can be established.

  • PDF

Optimization of multi-water resources in economical and sustainable way satisfying different water requirements for the water security of an area

  • Gnawali, Kapil;Han, KukHeon;Koo, KangMin;Yum, KyungTaek;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.161-161
    • /
    • 2019
  • Water security issues, stimulated by increasing population and changing climate, are growing and pausing major challenges for water resources managers around the world. Proper utilization, management and distribution of all available water resources is key to sustainable development for achieving water security To alleviate the water shortage, most of the current research on multi-sources combined water supplies depends on an overall generalization of regional water supply systems, which are seldom broken down into the detail required to address specific research objectives. This paper proposes the concept of optimization framework on multi water sources selection. A multi-objective water allocation model with four objective functions is introduced in this paper. Harmony search algorithm is employed to solve the applied model. The objective functions addresses the economic, environmental, and social factors that must be considered for achieving a sustainable water allocation to solve the issue of water security.

  • PDF

Multi-variable and Multi-site Calibration and Validation of SWAT for the Gap River Catchment (갑천유역을 대상으로 SWAT 모형의 다 변수 및 다 지점 검.보정)

  • Kim, Jeong-Kon;Son, Kyong-Ho;Noh, Jun-Woo;Jang, Chang-Lae;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.867-880
    • /
    • 2006
  • Hydrological models with many parameters and complex model structures require a powerful and detailed model calibration/validation scheme. In this study, we proposed a multi-variable and multi-site calibration and validation framework for the Soil Water Assessment Tool (SWAT) model applied in the Gap-cheon catchment located downstream of the Geum river basin. The sensitivity analysis conducted before main calibration helped understand various hydrological processes and the characteristics of subcatchments by identifying sensitive parameters in the model. In addition, the model's parameters were estimated based on existing data prior to calibration in order to increase the validity of model. The Nash-Sutcliffe coefficients and correlation coefficient were used to estimate compare model output with the observed streamflow data: $R_{eff}\;and\;R^2$ ranged 0.41-0.84 and 0.5-0.86, respectively, at the Heuduck station. Model reproduced baseflow estimated using recursive digital filter except for 2-5% overestimation at the Sindae and Boksu stations. Model also reproduced the temporal variability and fluctuation magnitude of observed groundwater levels with $R^2$ of 0.71 except for certain periods. Therefore, it was concluded that the use of multi-variable and multi-site method provided high confidence for the structure and estimated parameter values of the model.

Analysis on the evolution of water resources situation in Qiandao Lake Basin from 1960 to 2020

  • DU Junkai;Qiu Yaqin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.27-27
    • /
    • 2023
  • To analyze the evolution of water resources in Qiandao Lake Basin under the condition of climate change, a WEP-L distributed hydrological model was established to simulate the water cycle process in the basin during 1960-2020. The Mann-Kendall non-parametric test method and Hurst index method were used to analyze the inter-annual variation and annual distribution characteristics of the total water resources in the basin. The multi-scale temporal and spatial distribution and evolution trend of water resources in Qiandao Lake Basin were evaluated. The results show that: (1) The WEP-L model has good simulation results in the Qiandao Lake basin, and the Nash coefficient rate is above 0.83 in the periodic period and above 0.85 in the verification period. (2) The water yield coefficient of the whole basin ranges from 0.436 to 0.630. The annual average total water resource is 12.25 billion m3, equivalent to 1176.4mm of water depth. The annual distribution process shows a unimodal structure, and the water depth of each sub-basin ranges from 742 mm to 1266 mm, and the spatial distribution is higher in the west and lower in the east. (3) The annual water resources series in the basin showed an insignificant upward trend, and the Hurst index was 0.86, indicating a continuous upward trend. From the perspective of monthly water resources, January and February increased significantly, the other months were not significant changes.

  • PDF

Legal Improvements for SWG Application Relevant to the Water Loop System with Multi-Water Resources (SWG 추진을 위한 다중수원 워터루프 시스템 관련 법제도 개선방안)

  • Suh, Jin Suhk;Kim, Young Hwa;Han, Kuk Heon;Kim, Dong Hwan
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.127-140
    • /
    • 2014
  • Recently drastic climate changes(e.g., extreme floods and droughts) are often taking place around the world. Even an increase in uncertainty, population, and mega cities has caused drastic changes in water recycle process. As in other countries, Korea has faced some issues relevant to water security. In response to these changes, Smart Water Grid(SWG) system combining the current water resources management with ICT (Information and Communications Technology) is considered as a new paradigm for the Korean water resources management. This study aims to explore and identify influential factors contributing to the SWG system's application to analyze the importance and role of those factors, and then to offer a policy suggestion for the successful application of the SWG system along with legislative improvements in Korea. In this study, we looked at different barriers related to the SWG application and also the complicated Korean water laws, enacted by different ministries and in order to efficiently apply the SWG system to the current Korean water resources management structures. This study employed qualitative research methods to analyze and identify the priorities of the tasks to be implemented by analyzing conditions for the SWG application, especially related to multi water sources and micro water grid, because legal and institutional measures can be more important to manage conflicts between different stakeholders once the SWG enters a phase of standardization and commercialization from its development stage.

  • PDF

The Influence on the Runoff Characteristics by the Land Use in Small Watersheds (소유역의 토지이용이 유출 특성에 미치는 영향)

  • Choi, Ye-Hwan;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.204-208
    • /
    • 2004
  • In the forthcoming 21C, the barometer of cultural lives depends on that the water demand will increase or not. On the opposite site of that, the small watersheds will influence directly on how to cover the surface of watersheds with land use, no planning developing watersheds, and the rearrangement of small rivers. Espacially as the exordinary climatic phenomena, water resources and water content of the small watersheds will be confused oil exactly not to make a plan of water resources. This study area has four small watersheds groups in Gangwon-Do Province, that is, group I five small river watersheds including Changchoncheon etc., group II fiver rivers watersheds including to Hwalsanmogicheon etc., group III five small river watersheds including Singicheon etc., group IV including to Sabulanggolcheon etc. According to the land use such as dry field(or farm), ice field, forest land, building lot arid others, in small watersheds, the amount of runoff will be impacted by precipitation. The comparison between the runoff was getting from Kajiyama Formular and calculated runoff from multi-linear regressed equations by land use percentage was performed. Its correlation which was estimated by coefficient of correlation will be accepted or not, as approched 1.00000 values. As the monthly water resources amount is estimated by multi-linear regressed equations, we make a plan to demand and supply the water quantity from small river watersheds during any return periods.

  • PDF

A Study on Performance Characteristics of Wetted-type Multi Path Ultrasonic Flowmeter (습식 다회선 초음파유량계의 특성평가 연구)

  • Lee, Dong-Keun;Cho, Yong;Ko, Jae-Myoung;Park, Tae-Jin;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.5-9
    • /
    • 2013
  • An experimental investigation has been carried out in order to evaluate characteristics of wetted-type multi-path ultrasonic flowmeters. The multi-path ultrasonic flowmeters were installed at various entrance and exit locations for several cases of pipe fitting(straight, $90^{\circ}$ double elbow) and valve(gate valve, butterfly valve). We measured the flow-rate at each location. The measurement data of test flowmeter were compared with the measured data of reference flowmeter. The uncertainties of reference flowmeter and test flowmeter are 0.3 %, 0.4 %, respectively. The results demonstrate the effects of flowmeter location as well as the measurement errors in flow rate. The distance between the flow disturbance factor and a flowmeter was an important element of the test.

Water-Temperature Prediction of Streams Entering into Imha Reservoir using Multi-Regnssion Method (다중회귀분석을 이용한 임하호 유입하천의 수온예측)

  • Yi, Yong-Kon;Lee, Sanguk;Koh, Deuk Koo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.919-925
    • /
    • 2006
  • The regression models for the water temperatures of Ban Byeon Stream and Yong Jeon stream were developed using multi-regression method. It was also investigated that the applicability of the stream temperature prediction to two-dimensional numerical simulation to predict the vertical water temperature in Imha Reservoir. Air temperature and dew point as independent variables were selected to be applicable to cases with the different variation of flow rates. The data division of water temperature using a cutoff flow rate of $20m^3/s$ was found to reduce the prediction error of the stream temperature. The mean absolute percent error of the numerical simulation results of the vertical water temperature in Imha Reservoir using the regression models was 11%, which was only 4.3% lager than the simulation result using the measured stream temperature. Therefore, the regression models of the stream temperatures using multi-regression method applied in this study could be applied to predict the vertical water temperature in Imha Reservoir with a good accuracy.