• 제목/요약/키워드: Multi Regression Analysis

검색결과 832건 처리시간 0.024초

Cloud Removal Using Gaussian Process Regression for Optical Image Reconstruction

  • Park, Soyeon;Park, No-Wook
    • 대한원격탐사학회지
    • /
    • 제38권4호
    • /
    • pp.327-341
    • /
    • 2022
  • Cloud removal is often required to construct time-series sets of optical images for environmental monitoring. In regression-based cloud removal, the selection of an appropriate regression model and the impact analysis of the input images significantly affect the prediction performance. This study evaluates the potential of Gaussian process (GP) regression for cloud removal and also analyzes the effects of cloud-free optical images and spectral bands on prediction performance. Unlike other machine learning-based regression models, GP regression provides uncertainty information and automatically optimizes hyperparameters. An experiment using Sentinel-2 multi-spectral images was conducted for cloud removal in the two agricultural regions. The prediction performance of GP regression was compared with that of random forest (RF) regression. Various combinations of input images and multi-spectral bands were considered for quantitative evaluations. The experimental results showed that using multi-temporal images with multi-spectral bands as inputs achieved the best prediction accuracy. Highly correlated adjacent multi-spectral bands and temporally correlated multi-temporal images resulted in an improved prediction accuracy. The prediction performance of GP regression was significantly improved in predicting the near-infrared band compared to that of RF regression. Estimating the distribution function of input data in GP regression could reflect the variations in the considered spectral band with a broader range. In particular, GP regression was superior to RF regression for reproducing structural patterns at both sites in terms of structural similarity. In addition, uncertainty information provided by GP regression showed a reasonable similarity to prediction errors for some sub-areas, indicating that uncertainty estimates may be used to measure the prediction result quality. These findings suggest that GP regression could be beneficial for cloud removal and optical image reconstruction. In addition, the impact analysis results of the input images provide guidelines for selecting optimal images for regression-based cloud removal.

플라스틱 금형강의 선삭 가공시 중회귀분석을 이용한 표면거칠기 예측 (Predict of Surface Roughness Using Multi-regression Analysisin Turning of Plastic Mold Steel)

  • 배명일;이이선
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.87-92
    • /
    • 2013
  • In this study, we carried out the turning of plastic mold steel(STAVAX) with whisker reinforced ceramic tool(WA1) and analyzed ANOVA(Analysis of Variance) test. Multi-regression analysis was performed to find influential factors to surface roughness and to derive regression equation. Results are follows: From ANOVA test and confidence interval analysis of surface roughness, We found that influential factors to surface roughness was feed rate, cutting speed and depth of cut in order. From multi-regression analysis, we derived regression equation of STAVAX. it's coefficient of determination($R^2$) was 0.945 and It means that regression equation is significant. From experimental verification, we confirmed that surface roughness was predictable by regression equation. Compared with former research, we confirmed that increase of feed rate is the main cause of the growing of surface roughness and cutting force.

회귀분석을 이용한 열변형 오차 모델링에 관한 연구 (Research on the thermal deformation model ins using by regression analysis)

  • 김희술;고태조;김선호;김형식;정종운
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.47-52
    • /
    • 2002
  • There are many factors in machine tool error. These are thermal deformation, geometric error, machine's part assembly error, error caused by tool bending. Among them thermal error is 70% of total error of machine tool . Prediction of thermal error is very difficult. because of nonlinear tendency of machine tool deformation. In this study, we tried thermal error prediction by using multi regression analysis.

  • PDF

뇌졸중 환자의 결과지표에 영향을 주는 요인: 다변량 회귀분석과 다수준분석 비교 (Factors Affecting the Outcome Indicators in Patients with Stroke)

  • 김선희;이해종
    • 보건행정학회지
    • /
    • 제25권1호
    • /
    • pp.31-39
    • /
    • 2015
  • Background: The purpose of this study is comparison of the results between regression and multi-level analysis to find out factors influencing outcome indicators (in-hospital death, length of stay, and medical charges) of stroke patients. Methods: By using patient sample data of Health Insurance Review & Assessment Service, patients admitted with stroke were selected as survey target and 15,864 patients and 762 hospitals were surveyed. Results: For the results of existing regression analysis and multi-level analysis, models were assessed through model suitability index value and as a result, the value of results of multi-level analysis decreased compared to the results of regression, showing it is a better model. Conclusion: Factors influencing in-hospital death of stroke patients were analyzed and as a result, intra-class correlation (ICC) was 13.6%. In factors influencing length of stay, ICC was 11.4%, and medical charges, ICC was 17.7%. It was found that factors influencing the outcome indicators of stroke patients may vary in every hospital. This study could carry out more accurate analysis than existing research findings through analysis of reflecting structure at patient level and hospital level factors and analysis on random effect.

단침보강 세라믹 공구를 이용한 플라스틱 금형강(STAVAX)의 선삭가공 (Turning of Plastic Mold Steel(STAVAX) using Whisker Reinforced Ceramic)

  • 배명일;이이선
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.36-41
    • /
    • 2012
  • In this study, we turning plastic mold steel (STAVAX) against cutting speed, depth of cut, feed rate using whisker reinforced ceramic tool (WA1). To predict cutting force, analyze principal, radial, feed force with multi-regression analysis. Results are follows: From the analysis of variance, affected factor to cutting force feed rate, depth of cut, cutting speed in order and cutting speed was very small affect to cutting force. From multi-regression analysis, we extracted regression equation and the coefficient of determination$(R^2)$ was 0.9, 0.88, 0.856 at principal, radial and feed force. It means regression equation is significant. From the experimental verification, it was confirmed that principal, radial and feed force was predictable by regression equation.

Fused inverse regression with multi-dimensional responses

  • Cho, Youyoung;Han, Hyoseon;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • 제28권3호
    • /
    • pp.267-279
    • /
    • 2021
  • A regression with multi-dimensional responses is quite common nowadays in the so-called big data era. In such regression, to relieve the curse of dimension due to high-dimension of responses, the dimension reduction of predictors is essential in analysis. Sufficient dimension reduction provides effective tools for the reduction, but there are few sufficient dimension reduction methodologies for multivariate regression. To fill this gap, we newly propose two fused slice-based inverse regression methods. The proposed approaches are robust to the numbers of clusters or slices and improve the estimation results over existing methods by fusing many kernel matrices. Numerical studies are presented and are compared with existing methods. Real data analysis confirms practical usefulness of the proposed methods.

Wind Load Assumption of 765Kv Transmission Towers

  • Kim, Jeong-Boo
    • Journal of Electrical Engineering and information Science
    • /
    • 제1권1호
    • /
    • pp.45-50
    • /
    • 1996
  • This paper mainly describes the wind load assumption of 765kV transmission towers. We analyzed wind velocity data a meteorological observatories to get the wind velocity of 50 years return period by using Gumbel I type extreme value distribution. By multi-correlative regression analysis method, wind velocity at no observation site was obtained. Reference dynamics wind pressure map was obtained from above analysis and the wind pressure was classified as three regio in high temperature season.

  • PDF

매장의 VM과 쇼핑가치가 의복구매행동에 미치는 영향 - 남자대학생을 중심으로 - (The Influence of Store VM and Shopping Values on Male University Students' Clothing Purchase Behavior)

  • 오희선
    • 한국의류산업학회지
    • /
    • 제10권3호
    • /
    • pp.316-321
    • /
    • 2008
  • The purpose of this study is to find what male consumers value in their clothing behaviors, as well as to investigate how the consumers' shopping values and store VM impact on their clothing purchase behaviors. For data collection, research questionnaires were responded by 202 male students living in Busan. The collected data were analyzed according to the frequency-factor analysis using SPSS for win 10.1 Package, the factor analysis using Varimax, reliability analysis, and multi-regression analysis. The results of this study are as follows; First, the shopping values were composed of hedonic, utilitarian, and economic value, and VM was divided into store facility, store image, layout, and fashion information. Second, multi-regression analysis was conducted to find the impact of consumers' shopping values on their clothing purchase behaviors. The result showed that the hedonic shopping value and utilitarian shopping value significantly affected the consumers' clothing purchase behaviors, while economics shopping value did not show any statistical significance. Third, multi-regression analysis was conducted to find the impact of store VM on consumers' clothing purchase behaviors. The result showed that store image, layout, and fashion information had a significant impact on consumers' clothing purchase behaviors.

한국의 골프 코스에서 그린 스피드에 대한 예지고, 롤링, 질소 시비량과 계절의 효과 (The Effects of Mowing Height, Rolling, N-fertilizing, and Season on Green Speed in Korean Golf Courses)

  • 이상재;심경구;허근영
    • 한국조경학회지
    • /
    • 제29권4호
    • /
    • pp.91-99
    • /
    • 2001
  • This study was carried out to investigate the effects of mowing height, rolling, N-fertilizing, and season on green speed(i.e., ball-roll distance) for developing and implementing a program of increasing green speed in Korean golf courses. Data were subjected to multi-regression analysis using SPSSWIN(Statistical Package for the Social Science), which collected from Yong-Pyong golf course greens selected to investigate. The results was as follows. 1) The multi-regression analysis of mowing height, rolling times, and N-fertilizer application rates on spring green speed was as follows; $Y_1$(spring green speed)=4.287+0.155X$_1$(rolling times)-0.131X$_2$(the amount of N-fertilizing)-0.251X$_3$(mowing height). 2) The multi-regression analysis of mowing height, rolling times, and N-fertilizer application rates on summer green speed was as follows; $Y_2$(summer green speed)=4.833-0.423X$_3$(mowing height)+0.146X$_1$(rolling times)-0.107X$_2$(the amount of N-fertilizing). 3) The multi-regression analysis of mowing height, rolling times, and N-fertilizer application rates on fall green speed was as follows; $Y_3$(fall green speed)=4.651-0.383X$_3$(mowing height)+0.142X$_1$(rolling times)-0.103X$_2$(the amount of N-fertilizing). 4) As mowing height was lowered by 1mm, green speed increased by 0.251~0.423m. As rolling times increased by 1(one), green speed increased by0.142~0.15m. As the amount of N-fertilizing increased by 1g/$m^2$, green speed decreased by 0.103~0.131m. The season also affected green speed. In comparison with spring green speed, summer green speed decreased by 0.145m and fall green speed decreased by 0.144m.

  • PDF

공공청사의 운영비용에 영향을 미치는 요인과 요인별 영향력 분석 (Analysis of Factors and it's Effectiveness to Maintenance Cost of Public Buildings)

  • 고규진;조상욱;황정하;이찬식
    • 한국건설관리학회논문집
    • /
    • 제16권2호
    • /
    • pp.29-37
    • /
    • 2015
  • 공동주택은 장기수선충당금제도 등에 따라 중 장기적인 관점에서 효율적인 유지관리가 수행되고 있는 반면, 공공청사는 과거 유지관리비 실적자료 부족과 비효율적인 예산산정 등의 문제로 인해 유지관리가 체계적으로 이루어지지 않고 있다. 본 연구에서는 인천지역의 공공청사를 대상으로 운영비의 영향요인을 분석하고, 이를 검증하기 위해 상관관계 분석 및 다중회귀 분석을 실시하였다. 공공청사의 전기, 가스, 수도요금에 대한 경과년수, 연면적, 직원 수의 영향력을 분석한 결과, 전기요금은 직원 수와 높은 상관성을 보였으며 가스, 수도요금은 연면적과 상관성이 있는 것으로 나타났다. 다중회귀 분석을 통해 상관관계 분석결과를 검증하였으며, 회귀 방정식을 통해 운영비용의 추정모형을 제시하였다.