• Title/Summary/Keyword: Multi Parameter

Search Result 1,169, Processing Time 0.031 seconds

Sensibility Classification Algorithm of EEGs using Multi-template Method (다중 템플릿 방법을 이용한 뇌파의 감성 분류 알고리즘)

  • Kim Dong-Jun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.12
    • /
    • pp.834-838
    • /
    • 2004
  • This paper proposes an algorithm for EEG pattern classification using the Multi-template method, which is a kind of speaker adaptation method for speech signal processing. 10-channel EEG signals are collected in various environments. The linear prediction coefficients of the EEGs are extracted as the feature parameter of human sensibility. The human sensibility classification algorithm is developed using neural networks. Using EEGs of comfortable or uncomfortable seats, the proposed algorithm showed about 75% of classification performance in subject-independent test. In the tests using EEG signals according to room temperature and humidity variations, the proposed algorithm showed good performance in tracking of pleasantness changes and the subject-independent tests produced similar performances with subject-dependent ones.

Combustion Characteristics of Multi-port Hybrid Rocket (Multi-port 하이브리드 로켓의 연소 특성)

  • Kim, Soo-Jong;Min, Moon-Ki;Cho, Sung-Bong;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.256-259
    • /
    • 2007
  • In this paper, the combustion characteristics of hybrid rocket were studied with various port number of the cylindrical multi-port grain. For the regression rate case, as the port number increases, the both port regression rate and end-surface regression rate tend to increase. For the performance parameter case, as the port number increases, the O/F ratio tends to decreases and the specific impulse tends to increase.

  • PDF

Analysis of Isolation System in Distinct Multi-mechanism HIF Device (이종 복합 메카니즘 HIF 기구의 충격저감시스템 해석)

  • Choe Eui Jung;Kim Hyo-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.53-59
    • /
    • 2005
  • In this study, the isolation system for multi-mechanism HIF (high impulsive force) device has been investigated. For this purpose, parameter optimization process has been performed based on the simplified isolation system model under constraints of moving displacement and transmitted force. The design parameters for multi-mechanism HIF device have been derived with respect to HIF system I and HIF system II, respectively. In order to implement the dynamic absorbing system, the dual stage hydro-pneumatic damper and magnetorheological damper with semi-active control scheme are considered. Finally, the performance of the designed prototype isolation system has been evaluated by experimental works under actual operating conditions.

Optimum multi-objective modified step-stress accelerated life test plan for the Burr type-XII distribution

  • Srivastava, P.W.;Mittal, N.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.1
    • /
    • pp.23-50
    • /
    • 2014
  • This paper deals with formulation of optimum multi-objective modified step-stress accelerated life test (ALT) plan for Burr type-XII distribution under type-I censoring. Since it is impractical to estimate only one objective parameter after conducting costly ALT tests; also, it is not desirable to assume instantaneous changes in stress levels because of limited capacity of test equipments and the presence of undesirable failure modes, therefore, an optimum multi-objective modified step-stress ALT plan has been designed. The optimal test plan consists in determining the optimum low stress level and optimal time at which stress starts linearly increasing from low stress by minimizing the weighted sum of the asymptotic variances of the maximum likelihood estimator of quantile lifetimes at design constant stress. The method developed has been illustrated using an example. Sensitivity analysis has been carried out. Comparative study has also been done to highlight the merits of the proposed model.

  • PDF

A study on An Optimal Protection System for Power Distribution Networks by Applying Multi-Agent System (Multy-agent system을 애용한 배전계통 최적 보호시스템 연구)

  • Jung, K.H.;Min, B.W.;Lee, S.J.;Choi, M.S.;Kang, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.299-301
    • /
    • 2003
  • In this paper, a protection system using Multi-Agent concept for power distribution network is proposed. Multi agent system consist of Feeder agent, OCR(Over Current Relay) agent, Recloser agent and Switch agent. An agent calculates and corrects its parameter by itself through communication with neighboring agents and its own intelligence algorithm. Simulations in a simple distribution network show the effectiveness of the suggested protection system. Multi-Agent System, protection of distribution network, Communication.

  • PDF

Production/Distribution Scheduling for Integrated Supply Chain Management (통합 공급체인관리를 위한 생산/배송 스케줄링)

  • Park, Yang-Byung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.443-453
    • /
    • 2002
  • Many firms are trying to optimize their production and distribution systems separately, but possible profit increase by this approach is limited. Nowadays, it is more important to analyze these two systems simultaneously for the integrated supply chain management. This paper is a computational study to investigate the effectiveness of integrating production and distribution scheduling. We are interested in a multi-plant, multi-retailer, multi-product and multi-period industrial problem where the objective in solving production and distribution scheduling problem is to maximize the total net profit. Computational results on test problems of various sizes using the heuristic we developed show a substantial advantage of the integrated scheduling approach over the decoupled scheduling process. Sensitivity analysis on the parameter values indicates that, under the right conditions, the effectiveness of integrating production and distribution functions can be extremely high.

Application of multi objective genetic algorithm in ship hull optimization

  • Guha, Amitava;Falzaranoa, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.91-107
    • /
    • 2015
  • Ship hull optimization is categorized as a bound, multi variable, multi objective problem with nonlinear constraints. In such analysis, where the objective function representing the performance of the ship generally requires computationally involved hydrodynamic interaction evaluation methods, the objective functions are not smooth. Hence, the evolutionary techniques to attain the optimum hull forms is considered as the most practical strategy. In this study, a parametric ship hull form represented by B-Spline curves is optimized for multiple performance criteria using Genetic Algorithm. The methodology applied to automate the hull form generation, selection of optimization solvers and hydrodynamic parameter calculation for objective function and constraint definition are discussed here.

A New Correlation on Pressure Drop in Horizontal Multi Channels (수평 다채널에서의 압력강하에 관한 새로운 상관식)

  • CHOI, Yong-Seok;LIM, Tae-Woo;YOU, Sam-Sang;KIM, Hwan-Seong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.5
    • /
    • pp.1273-1279
    • /
    • 2016
  • Flow boiling pressure drop in multi channels was experimently investigated. The multi channel has a width and depth of 0.45 and 0.2mm respectively, and comprises 15 parallel channels. The measured total pressure drop is expressed by the sum of the frictional pressure drop and acceleration pressure drop. In order to predict the total pressure drop, it is required to obtain the correct frictional pressure drop. The existing correlations to predict the frictional pressure were compared with measured frictional pressure drop. The new correlation was developed in the form of the Chisholm correlation. It was related to Chisholm Constant B as a function of Martinelli parameter. The new correlation predicted the experimental data within a mean absolute error of 5.5%.

Multi-objective Optimization of Butterfly Valve using the Coupled-Field Analysis and the Statistical Method (연성해석과 통계적 방법을 이용한 Butterfly Valve의 다목적 최적설계)

  • 배인환;이동화;박영철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.127-134
    • /
    • 2004
  • It is difficult to have the existing structural optimization using coupled field analysis from CFD to structure analysis when the structure is influenced of fluid. Therefore in an initial model of this study after doing parameter design from the background of shape using topology optimization. and it is making a approximation formula using by the CFD-structure coupled-field analysis and design of experiment. By using this result, we conducted multi-objective optimization. We could confirm efficiency of stochastic method applicable in the scene of structure reliability design to be needed multi-objective optimization. And we presented a way of design that could overcome the time and space restriction in structural design such as the butterfly valve with the less experiment.

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.