모바일 GPU가 발전함에 따라 멀티코어 GPU를 효과적으로 최적화하는 것은 스마트폰의 성능을 높이는데 있어 중요한 문제가 되고 있다. 하지만 대부분의 모바일 GPU에 관한 연구는 싱글코어 모바일 GPU에 대해 다루고 있거나, GPU 공급자에 의한 제한적인 연구만을 다루고 있다. 따라서 본 논문에서는 멀티코어 GPU의 작업 분배 패턴과 효율성 분석을 통해 성능향상의 가능성에 대한 분석을 수행하였다. 실험은 DS-5 Streamline을 사용하여 시스템 사용자 인터페이스를 조작하였을 때, GPU의 코어 수의 변화에 따른 그래픽 처리 소요 시간을 측정한 실험과 GPU의 코어 수에 따른 작업 분배 패턴에 대한 실험을 수행하였다. 프로파일링 결과, GPU의 코어수가 더 증가했음에도 불구하고 그래픽 애플리케이션을 실행하는데 요구되는 전체 소요시간이 증가하는 경우를 발견하였다. 또한 GPU가 그래픽을 처리할 때, 약 4ms의 오버헤드가 CPU와 GPU 사이의 통신에서 발생하고, GPU 내부 드라이버의 활동으로 인한 지연이 발생했음을 확인하였다. 따라서 본 논문에서 GPU 동작의 비효율성에 대한 분석결과는 앞으로의 모바일 멀티코어 GPU의 연구에 있어 참고가 될 수 있을 것이라 예상한다.
최근 고품질, 초고해상도 실시간 렌더링 지원을 위하여 다중 GPU 렌더링에 대한 관심이 커지고 있다. 실시간 렌더링에서 여러 개의 GPU로 고성능을 달성하기 위해서는 GPU 간의 데이터 전송 지연과 프레임 합성 부하를 고려해야 한다. 이 논문은 이러한 부하를 최소화하고 다중 GPU의 효율을 향상하기 위해 split frame 렌더링의 동기화를 묵시적 질의 기반으로 향상하는 기법을 제안한다. 또한, 이러한 묵시적 동기화 기반 프레임 합성을 지원하기 위한 메시지 큐 기반의 렌더링 스케줄링 알고리즘도 제안한다. 본 알고리즘을 적용한 실험은 본 알고리즘이 기존 알고리즘 대비 200% 이상 효율을 향상함을 확인하였다.
본 논문에서는 조영전 CT 와 조영후 CTA 영상 의 움직임을 보정하기 위하여 연산에 효율적인 다중 GPU 기반 영상정합 기법을 제안한다. 제안방법은 크게 다중 GPU 기반 정합과 뇌혈관 가시화의 두 단계로 구성된다. 우선, 복셀기반정합을 수행하기 위하여 GPU 내부의 병렬성뿐 아니라 GPU 간 병렬성도 고려함으로써 유사도값을 계산한다. 그리고 나서 CTA 영상데이터에서 최적변환행렬에 의하여 변환된 CT 영상데이터를 다중 GPU를 이용하여 차감하고, 차감된 결과를 GPU 기반 볼륨렌더링기법을 이용하여 가시화한다. 본 논문에서 제안한 방법을 화질과 수행시간측면에서 기존방법에 대한 우수성을 나타내기 위하여 5쌍의 조영전 뇌 CT 영상과 조영후 뇌 CTA 영상데이터를 사용하여 비교하였다. 실험결과 제안방법은 뇌혈관이 잘 가시화되어 혈관질환을 정확히 진단할 수 있었다. 다중 GPU 기반 방법은 CPU 기반 방법에 비하여 11.6배, 단일 GPU 기반 방법에 비하여 1.4배 빠른 결과를 보여주었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권3호
/
pp.911-931
/
2021
Recently, most cloud services use Docker container environment to provide their services. However, there are no researches to evaluate the performance of communication libraries for multi-GPU based distributed deep learning in a Docker container environment. In this paper, we propose an efficient communication architecture for multi-GPU based deep learning in a Docker container environment by evaluating the performances of various communication libraries. We compare the performances of the parameter server architecture and the All-reduce architecture, which are typical distributed deep learning architectures. Further, we analyze the performances of two separate multi-GPU resource allocation policies - allocating a single GPU to each Docker container and allocating multiple GPUs to each Docker container. We also experiment with the scalability of collective communication by increasing the number of GPUs from one to four. Through experiments, we compare OpenMPI and MPICH, which are representative open source MPI libraries, and NCCL, which is NVIDIA's collective communication library for the multi-GPU setting. In the parameter server architecture, we show that using CUDA-aware OpenMPI with multi-GPU per Docker container environment reduces communication latency by up to 75%. Also, we show that using NCCL in All-reduce architecture reduces communication latency by up to 93% compared to other libraries.
다차원의 데이터를 색인하기 위해 처음 R-tree가 제안된 이후 다양한 방법으로 질의 성능을 향상시키기 위한 많은 연구가 이루어졌다. 그 가운데 다중프로세서를 이용한 병렬 기법으로 질의 성능을 향상시킨 GPU기반의 R-tree가 제안되었다. 하지만 GPU가 갖는 물리적 메모리 크기의 한계가 있어 데이터의 크기가 제한된다. 이에 본 논문에서는 다중 GPU를 이용한 R-tree의 병렬 범위 질의 처리 기법인 MGR-tree 제안한다. 제안하는 MGR-tree는 기존의 GPU기반의 R-tree 질의 처리 기법을 기반으로 하여 다중 GPU에서 질의 처리를 가능하게 R-tree의 노드를 다중 GPU상에 분할하여 분산 처리 하였다. 실험을 통해 MGR-tree는 GPU에서의 선형검색에 비해 최대 9.1배, GPU기반 R-tree에 비해 최대 1.6배 가량의 성능이 향상된 것을 확인하였다.
본 논문에서는 공간 및 전원에 제약사항이 존재하는 함정용 다기능레이다의 생존성 향상을 위해 고속 연산용 DSP를 GPU로 대체 가능성을 검토하기 위한 연구를 수행하였다. 성능비교를 위해 동일한 알고리즘으로 DSP와 GPU상에 신호처리기를 구현하였으며, 다기능 추적 레이다 비디오 신호에 대해 응답속도 측면에서 비교를 수행하였다. 성능비교 결과 전체 신호처리 응답속도는 최소 95 us에서 328 us로 GPU가 DSP대비 1.2배~4.1배 우세하였다. 이 연구를 통해 DSP대비 GPU의 성능은 향후 함정용 다기능레이다 뿐 아니라 고속연산이 필요한 레이다신호처리장치를 대체할 수 있을 것으로 예상된다.
실시간 홀로그래피 방송을 제작하기 위해서는 디지털 홀로그램을 고속으로 생성하는 것이 중요하다. 본 논문에서는 디지털 홀로그램 생성을 위한 Computer-Generated Holography(CGH) 식의 병렬 구조를 최적화하고, Compute Unified Device Architecture(CUDA)와 Open Multi-Processing (OpenMP) 를 이용한 Multi Graphic Processing Unit(Multi-GPU) 기반의 디지털 홀로그램의 고속 생성을 위한 최적화 기법을 제안한다. 디지털 홀로그램을 생성하는 과정은 독립적인 연산을 할 수 있는 다수의 개체로 병렬화 할 수 있는 구조이기 때문에 이에 특화된 CUDA와 OpenMP를 사용함으로써 CGH식을 고속으로 연산할 수 있다. 여기서 더 나아가 이를 최적화하기 위해서 상수화, 벡터화, 루프풀기 등의 방법을 제안한다. 본 논문에서 제안된 기법을 통해서 기존 CPU에서의 CGH 연산속도에 비해 약 9,700배 정도의 속도를 개선할 수 있었다.
DNA computing-inspired pattern classification based on the hypernetwork model is a novel approach to pattern classification problems. The hypernetwork model has been shown to be a powerful tool for multi-class data analysis. However, the ordinary hypernetwork model has limitations, such as operating sequentially only. In this paper, we propose a efficient implementing method of DNA computing-inspired pattern classifier using GPU. We show simulation results of multi-class pattern classification from hand-written digit data, DNA microarray data and 8 category scene data for performance evaluation. and we also compare of operation time of the proposed DNA computing-inspired pattern classifier on each operating environments such as CPU and GPU. Experiment results show competitive diagnosis results over other conventional machine learning algorithms. We could confirm the proposed DNA computing-inspired pattern classifier, designed on GPU using CUDA platform, which is suitable for multi-class data classification. And its operating speed is fast enough to comply point-of-care diagnostic purpose and real-time scene categorization and hand-written digit data classification.
컴퓨터 비전이나 패턴 인식 분야에서 이용되고 있는 많은 알고리즘들이 최근 빠른 수행시간을 위해 GPU에서 구현되고 있지만, GPU를 이용하여 알고리즘을 구현할 경우 크게 두 가지 문제점을 고려해야 한다. 첫째, 컴퓨터 그래픽스 분야의 지식이 필요한 쉐이딩(shading) 언어를 알아야 한다. 둘째, GPU를 효율적으로 활용하기 위해 CPU와 GPU간의 데이터 교환을 최소화해야 한다. 이를 위해 CPU는 GPU에서 처리할 수 있는 최대 용량의 데이터를 생성하여 GPU에 전송해야 하기 때문에 CPU에서 많은 처리시간을 소모하며, 이로 인해 CPU와 GPU 사이에 많은 오버헤드가 발생한다. 본 논문에서는 그래픽 하드웨어와 멀티코어(multi-core) CPU를 이용한 빠르고 효율적인 신경망 구현 방법을 제안한다. 기존 GPU의 첫 번째 문제점을 해결하기 위해 제안된 방법은 복잡한 쉐이팅 언어 대신 그래픽스적인 기본지식 없이도 GPU를 이용하여 응용프로그램 개발이 가능한 CUDA를 이용하였다. 두 번째 문제점을 해결하기 위해 멀티코어 CPU에서 공유 메모리 환경의 병렬화를 수행할 수 있는 OpenMP를 이용하였으며, 이의 처리시간을 줄여 CPU와 GPU 환경에서 오버 헤드를 최소화할 수 있다. 실험에서 제안된 CUDA와 OpenMP기반의 구현 방법을 신경망을 이용한 문자영역 검출 알고리즘에 적용하였으며, CPU에서의 수행시간과 비교하여 약 15배, GPU만을 이용한 수행시간과 비교하여 약 4배정도 빠른 수행시간을 보였다.
GPGPU 환경에서의 ML 모델이 다양한 분야에 지속적으로 활용되면서, 이미지 분할(image segmentation) 연구가 활발하다. multi-GPU 환경에서 성능 최적화를 위하여 병렬화 기법들이 활용되고 있다. 본 연구에서는 multi-GPU 환경에서 U-Net 모델의 전체 수행 시간을 단축하기 위해 convolution 연산을 최적화하는 기법을 적용하는 실험을 진행하였고 shared memory, data parallelism 를 적용하여 82% 성능 향상을 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.