• Title/Summary/Keyword: Multi -spectral camera

Search Result 122, Processing Time 0.027 seconds

Performance Evaluation of An Earth Observation Camera for Small Satellites (소형 위성용 지구관측 광학카메라의 시험모델 평가)

  • 양호순;강명석;정성근;최영완;김이을;양승욱;김종운;윤지호;김도형
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.134-135
    • /
    • 2003
  • Medium-sized Aperture Camera (MAC)는 근적도궤도(Near Equatorial Orbit) 지구관측위성 MACSAT의 주탑재체로, 우리나라의 (주)쎄트렉아이와 말레이시아의 ATSB社와 오는 2004년 발사를 목표로 공동 개발되고 있다. MAC은 push-broom 방식의 전자광학 탑재체로, 지상해상도 2.5 m를 가지는 PAN band 1개, 지상해상도 5 m를 가지는 Multi-Spectral band 4 개를 가지고, 지상의 swath width는 20 km를 가진다. (중략)

  • PDF

Optical Alignment of An Earth Observation Camera for Small Satellites (소형 위성용 지구관측 광학카메라의 광학정렬)

  • 김도형;양호순;최영완;김이을
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.136-137
    • /
    • 2003
  • Medium-sized Aperture Camera (MAC)는 근적도궤도(Near Equatorial Orbit) 지구관측위성 MACSAT의 주탑재체로, 우리나라의 (주)쎄트렉아이와 말레이시아의 ATSB社와 오는 2004년 발사를 목표로 공동 개발되고 있다. MAC은 push-broom 방식의 전자광학 탑재체로, 지상해상도 2.5 m를 가지는 PAN band 1개, 지상해상도 5 m를 가지는 Multi-Spectral band 4 개를 가지고, 지상의 swath width는 20 km를 가진다. (중략)

  • PDF

Real-Time Software Design using VxWorks for MSC(Multi-Spectral Camera) on KOMPSAT-2

  • Heo, Haeng-Pal;Yong, Sang-Soon;Kong, Jong-Pil;Kim, Young-Sun;Youn, Heong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.92.6-92
    • /
    • 2001
  • MSC is being developed to be installed on KOMPSAT(Korea Multi-Purpose Satellite-II and to provide high resolution multi-spectral. MSC consists of three main subsystems. One is EOS(Electro-Optics Subsystem), another is PMU(Payload Management Unit) and the other is PDTS(Payload Data Transmission Subsystem). There is an SBC(Single Board Computer) in the PMU to control all MSC subsystems. SBC incorporates Intel 80486 as a main processor and VxWorks as a real-time operating system. SBC software consists of four main tasks and several modules to deal with all control information for imaging and all the state of health telemetrv data, and to perform interface with another MSC units. SBC software also has to handle a lot of commands in order for MSC to perform his mission. One mission command consists of a series of related commands, which are In be executed in the designated sequence, with a specified time ...

  • PDF

The flight Test Procedures For Agricultural Drones Based on 5G Communication (5G 통신기반 농업용 드론 비행시험 절차)

  • Byeong Gyu Gang
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.38-44
    • /
    • 2023
  • This study aims to determine how agricultural drones are operated for flight tests using a 5G communication in order to carry out a mission such as sensing agricultural crop healthy status with special cameras. Drones were installed with a multi-spectral and IR camera to capture images of crop status in separate altitudes with different speeds. A multi-spectral camera can capture crop image data using five different particular wavelengths with a built-in GPS so that captured images with synchronized time could provide better accuracy of position and altitude during the flight time. Captured thermal videos are then sent to a ground server to be analyzed via 5G communication. Thus, combining two cameras can result in better visualization of vegetation areas. The flight test verified how agricultural drones equipped with special cameras could collect image data in vegetation areas.

THE ADVANTAGE OF ON ORBIT NON-UNIFORMITY CORRECTION FOR MULTI SPECTRAL CAMERA (MSC)

  • Chang Young-Jun;Kong Jong-Pil;Huh Haeng-Pal;Kim Young-Sun;Park Jong-Euk
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.586-588
    • /
    • 2005
  • The MSC (Multi Spectral Camera) system is a remote sensing payload to obtain high resolution ground image. This system uses lossy image compression method for &Direct mission& that transmit whole image during one contact. But some image degradation occurred especially at high compression ratio. To reduce this degradation, the MSC uses NUC (Non-uniformity Correction) Unit. This unit correct CCD (Charge Coupled Device)'s high-frequency non-uniformity. So high frequency contents of image can be minimized and whole system SNR can be maximized. But NUC has some disadvantage either. It decreases entire system reliability by adding one electronic system. Adding NUC also led to difficulty of electronic design, assembly and testability. In this paper, the comparison is performed between on-orbit non-uniform correction and on ground correction. by evaluating NUC advantage for the point of view of image quality. Using real MSC parameter and proper model, considerable reference point for the system design came to possible.

  • PDF

Design of Antenna Tracking Software for MSC(Multi-Spectral Camera) Antenna Control

  • Kim, Young-Sun;Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.235-240
    • /
    • 2002
  • This paper shows the desist concept of an ATS(Antenna Tracking Software) to control the movement of the MSC(Multi-Spectral Camera) antenna. The MSC has a two-axes directional X-band antenna for image transmission to KGS(KOMSAT2 Ground Station). The main objective of the ATS is to drive the APM(Antenna Pointing Mechanism) to the required elevation and the azimuth position according to an appropriate TPF(Tracking Parameter File). The ATS is implemented as one task of the SBC(Single Board Computer) software, which uses VxWorks as a real time OS. The ATS has several operational modes such as STANDBY mode, First EL mode, First AZ mode, Normal Operation mode, and so on. The ATS uses two PI controllers fur the velocity and the position loop respectively, to satisfy the requirements specification. In order to show the feasibility of the described design concept, the various simulations and the experiments are performed under specific test configuration.

  • PDF

Spectral Reflectance Estimation based on Similar Training Set using Correlation Coefficient (상관 계수를 이용한 유사 모집단 기반의 분광 반사율 추정)

  • Yo, Ji-Hoon;Ha, Ho-Gun;Kim, Dae-Chul;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.142-149
    • /
    • 2013
  • In general, a color of an image is represented by using red, green, and blue channels in a RGB camera system. However, only information of three channels are limited to estimate a spectral reflectance of a real scene. Because of this, the RGB camera system can not accurately represent the color. To overcome this limitation and represent an accurate color, researches to estimate the spectral reflectance by using a multi-channel camera system are being actively proceeded. Recently, a reflectance estimation method adaptively constructing a similar training set from a traditional training set according to a camera response by using a spectral similarity was introduced. However, in this method, an accuracy of the similar training set is reduced because the spectral similarity based on an average and a maximum distances was applied. In this paper, a reflectance estimation method applied a spectral similarity based on a correlation coefficient is proposed to improve the accuracy of the similar training set. Firstly, the correlation coefficient between the similar training set and the spectral reflectance obtained by Wiener estimation method is calculated. Secondly, the similar training set is constructed from the traditional training set according to the correlation coefficient. Finally, Wiener estimation method applied the similar training set is performed to estimate the spectral reflectance. To evaluate a performance of the proposed method with previous methods, experimental results are compared. As a result, the proposed method showed the best performance.

Photogrammetry 기법을 활용한 MSC 설치면의 정밀 측정

  • Woo, Sung-Hyun;Kim, Hong-Bae;Moon, Sang-Mu;Im, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.126-133
    • /
    • 2004
  • Photogrammetry, as its name implies, is a 3-dimensional coordinate measuring technique that uses photographs as the fundamental medium for metrology. In the last few years the accuracy of photogrammetry has increased dramatically thanks to the rapid advance of digital camera manufacturing technique. This paper discusses photogrammetric measurement of the interface surface of MSC(Multi-Spectral Camera), which is a main payload of KOMPSAT-2. Total 24 paper targets on the objective surfaces and two scale bars calibrated with high accuracy were used for measurement, and multiple images were taken from 11 different camera angles by using a spacecraft rotation dolly. As a result of analysis, 3D coordinates of each targeted point were obtained and the flatness value based on the selected reference plane was calculated and compared with the pre-determined requirement. The technique acquired by this study is expected to be used for the 3D precise measurement of ultra-light weight and inflatable space structures such as a satellite antenna and a solar array.

  • PDF

An Approach to Measurement of Water Quality Factors and its Application Using NOAA satellite Data

  • Jang, Dong-Ho;Jo, Gi-Ho;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.363-370
    • /
    • 1999
  • Remotely sensed data is regarded as a potentially effective data source for the measurement of water quality and for the environmental change of water bodies. In this study, we measured the spectral reflectance by using multi-spectral image of low resolution camera(LRC) which will be loaded in the OSMI multi-purpose satellite(KOMPSAT) scheduled to be launched on 1999 to use the data in analyzing water pollution. We also investigated the possibility of extraction of water quality factors in water bodies by using remotely sensed low resolution data such as NOAA/AVHRR. In this study, Shiwha-District and Sang-Sam Lake was set up as the subject areas for the study. In this part of the study, we measured the spectral reflectance of the water surface to analyze the radiance of the water bodies in low resolution spectral band and tried to analyze the water quality factors in water bodies by using radiance feature from another remotely sensed data such as NOAA/AVHRR. As the method of this study, first, we measured the spectral reflectance of the water surface by using SFOV( Single Field of View) to measure the reflectance of water quality analysis from every channel in LRC spectral band(0.4~O.9${\mu}{\textrm}{m}$). Second, we investigated the usefulness of ground truth data and the LRC data by measuring every spectral reflectance of water quality factors. Third, we analyzed water quality factors by using the radiance feature from another remotely sensed data such as NOAA/AVHRR. We carried out ratio process of what we selected Chlorophyll-a and suspended sediments as the first factors of the water quality. The results of the analysis are below. First, the amount of pollutants of Shiwha-Lake has been increasing every you since 1987 by factors of eutrophication. Second, as a result of the reflectance, Chlorophyll-a represented high spectral reflectance mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and turbidity represented high spectral reflectance at 0.57${\mu}{\textrm}{m}$. But suspended sediments absorbed high at 0.8${\mu}{\textrm}{m}$. Third, Chlorophyll-a and suspended sediments could have a distribution chart as a result of the water quality analysis by using NOAA/AVHRR data.

  • PDF

Merging of KOMPSAT-1 EOC Image and MODIS Images to Survey Reclaimed Land (간척지 조사를 위한 KOMPSAT-1 EOC 영상과 MODIS 영상의 중합)

  • 신석효;김상철;안기원;임효숙;서두천
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.171-180
    • /
    • 2003
  • The merging of different scales or multi-sensor image data is becoming a widely used procedure of the complementary nature of various data sets. Ideally, the merging method should not distort the characteristics of the high-spatial and high-spectral resolution data used. To present an effective merging method for survey of reclaimed land, this paper compares the results of Intensity Hue Saturation (IHS), Principal Component Analysis (PCA), Color Normalized(CN) and High Pass Filter(HPF) methods used to merge the information contents of the high-resolution (6.6 m) Electro-Optical Camera (EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1 (KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer (MODIS) image data. The comparison is made by visual evaluation of three-color combination images of IHS, PCA, CN and HPF results based on spatial and spectral characteristics. The use of a contrasted EOC panchromatic image as a substitute for intensity in merged images with MODIS bands 1, 2 and 3 was found to be particularly effective in this study.

  • PDF