• Title/Summary/Keyword: Muffler

Search Result 242, Processing Time 0.022 seconds

Noise Reduction of Muffler by Optimal Design

  • Oh, Jae-Eung;Cha, Kyung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.947-955
    • /
    • 2000
  • This paper proposes an optimal design scheme to improve the muffler's capacity of noise reduction of the exhaust system by combining the Taguchi method and a fractional factorial design. As a measuring tool for the performance of a muffler, the performance prediction software which is developed by Oh, Lee and Lee (1996) is used. In the first stage of a design, the length and radius of each component of the current muffler system are selected as control factors. Then, the $L_{18}$ table of orthogonal arrays is adopted to extract the effective main factors. In the second stage, the fractional factorial design is adopted to take interactions into consideration, which the $L_{18}$ table of orthogonal arrays can not consider. For an optimal design, the $L_{27}$ table of orthogonal arrays with main and interaction effects is proposed and the noise factors such as temperature, background noise and humidity are analyzed for more efficient design simultaneously.

  • PDF

Experimental Study on the Exhaust Pressure Charactieristics in the small motorcycle. (소형 이륜자동차의 머플러 배기압력 특성에 관한 실험적 연구)

  • Yi, C.S.;Choi, S.C.;Bae, J.Y.;Chung, H.S.;Jeong, H.M.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.678-683
    • /
    • 2004
  • In this study, a experiment has been developed for measuring the exhaust pressure of muffler at inlet and outlet. The main experimental parameters were a engine speed and sound absorbing material in the muffler. The muffler sound absorbing material tested a steel wool and glass wool. The exhaust pressure was measured with pressure sensor. The phase of exhaust pressure with high speed was moved according to increasing engine speed comparing with exhaust pressure with low speed. Also, the distribution of exhaust pressure at the model-1, 2 and 3 are similar with distribution of exhaust pressure at muffler inlet.

  • PDF

Muffler Design Using a Topology Optimization Method (위상 최적화 기법을 이용한 머플러 설계)

  • Lee, Jin-Woo;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1085-1089
    • /
    • 2007
  • An acoustic topology optimization method is developed to optimize the acoustic attenuation capability of a muffler. The transmission loss of the muffler is calculated by using the three-point method based on finite element analysis. Each element of the finite element model is assumed to have the variable acoustic properties, which are penalized by a carefully-selected interpolation function to yield clear expansion chamber shapes at the end of topology optimization. The objective of the acoustic topology optimization problem formulated in this work is to maximize the transmission loss at a target frequency. The transmission loss value at a deep frequency of a nominal muffler configuration can be dramatically increased by the proposed optimization method. Optimal muffler configurations are also obtained for other frequencies.

  • PDF

Exhaust Noise Control with the Active Muffler in Exhaust System of Vehicle (상용차 배기계에서 액티브 머플러를 이용한 배기 소음 제어)

  • 김홍섭;홍진석;오재응;송진호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.36-42
    • /
    • 1998
  • In this study, active muffler was designed and was manufactured for exhaust noise reduction of commercial vehicle, then experiment of real vehicle was conducted. In a manufactured active muffler, because the flow of exhaust noise in tail pope outlet are become a plane wave, the global reduction if radiation noise from outlet and the placement of error microphone to avoid the exhaust gas of high temperature could be implemented. In control algorithm, reduction of noise of engine driving frequency and harmonic frequency can be archieved using proposed reference signal including a fixed speed state(2,000rpm, 3,000rpm, 4,000rpm) and a run-up speed state(2,000rpm$\rightarrow$4,000rpm) is accomplished with the active muffler installed in vehicle.

  • PDF

Development of a muffler for the super heavymachinery in the 70 ton class (70톤 급 초대형 중장비용 머플러 개발)

  • Lee, Shi-Bok;Lee, Won-Tae;Nam, Kyung-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2557-2564
    • /
    • 2009
  • In this study, a muffler for the super heavy machinery in the 70 ton class is developed. Developing process relies on experimental and rule of thumb approach. Various muffler internal structures consisting of partition plates, perforated and non-perforated through pipes, and absorbent are tried and compared for the transmission loss performance. Based on the experimental results, the best combination and locations of the internal acoustic components which affects the muffler performance are determined.

Noise Reduction of a Rotary Compressor by a new Muffler (저소음 머플러 적용 회전식 압축기의 소음 저감)

  • Kim, Bong-Jun;Youn, Young;Jung, Cheol-Hong;Lee, Seung-Gap
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.141-145
    • /
    • 2003
  • The rotary compressor is widely used for the air conditioner because it is efficient and compact. In recent, the need for silent compressors is much stronger than the past. The new type muffler was invented to reduce noise level and to improve sound quality. The new type muffler that has two side discharge holes represents much lower overall noise level, especially noise levels around 1KHz than the old type one that has one center discharge hole in acoustic spectra and dynamic pressure spectra. The noise reduction effects of the new type muffler were verified by noise tests for rotary compressors and air conditioners.

  • PDF

Integrated design method of suction muffler in compressor (압축기 흡입 머플러 통합적 설계 방안)

  • Wang, Semyung;Oh, Seungjae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.771-772
    • /
    • 2014
  • In this paper, the integrated design method of suction muffler in compressor was studied. There are three things to consider when designing this. First, the transmission loss was maximized to consider the noise reduction. Second, dissipation energy of fluid flow was minimized for energy efficiency. Finally, acoustical resonance frequency of suction muffler was controlled because energy efficiency can be increased by supercharging of refrigerant. Therefore, suction muffler was designed to have the specific resonance frequency. The input impedance was used for designing target acoustical resonance frequency. Topology optimization was used for optimization method.

  • PDF

Numerical investigation into the characteristics of flow and acoustic performances of mufflers for a reciprocating compressor (왕복압축기용 머플러의 유동-음향 성능 특성에 대한 수치적 고찰)

  • Kim, Sanghyeon;Cheong, Cheolung;Kim, Haeseung;Lee, Hyojae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.673-678
    • /
    • 2014
  • In a compressor, highly impulsive pressure fluctuations induced by a reciprocating piston and valves cause noise and vibration to be so critical issues that low noise requirement always challenges engineers developing it. A muffler is frequently used for reducing these impulsive noise components, but has adverse effects on compressor's performance due to additional pressure drop and heat transfer of refrigerant when it pass through the muffler. In this study, compressible full 3-dimensional CFD simulations are performed to investigate both of flow and acoustic performances of a muffler in use for compressors. On a basis of the analysis results, a parametric study using design factors introduced to improve flow and acoustic performances of the existing muffler is carried out. Finally, improved designs are suggested to confirm the current results.

  • PDF

Development of a Low Noise and High Efficiency Rotary Compressor by a New Muffler (신규 저소음 및 고효율 머플러 적용 회전식 압축기 개발)

  • Jarng, In-Sun;Kim, Bong-Jun;Youn, Young;Sung, Choon-Mo;Lee, Seung-Gap
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.533-539
    • /
    • 2004
  • The rotary compressor is widely used for the air conditioner because it is efficient and compact. In recent, the need for silent and efficient compressors is much stronger than the past. The new type muffler was invented to reduce noise level and to improve efficiency. The new type muffler that has two side discharge holes and dome shape represents much lower overall noise level, especially noise levels around 1kHz than the old type one that has one center discharge hole In acoustic spectra. Also it has higher air conditioner efficiency by lower oil discharging amount of a compressor than old type one that has rectangular shape and two side discharge holes. The noise reduction and efficiency improvement effects of the new type muffler were verified by tests for rotary compressors and air conditioners.

  • PDF

Analysis of Engine Exhaust Muffler by Acoustic Theory (엔젠 배기소음기의 음향이론에 의한 해석)

  • Okda, Josuka
    • The Journal of the Acoustical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.82-91
    • /
    • 1982
  • To analyze the characteristics of engine exhaust mufflers by the acoustic theory is necessary for understanding the action of mufflers and for designing the mufflers. In many cases, the " Transmission Loss" is used in the analysis, but TL is not suitable for above purposes. In this paper the characteristics of the mufflers is analyzed by means of the four terminal constants of whole muffler system. After some approximation, the characteristics of engine exhaust mufflers is shown by the "D" in the four terminal constants. 20log│D│ can be easily constructed with the characteristics of each element of the muffler system. The analysis is done under the conditions of no loss and no gas-flow, so the result is approximate. But it is very useful for understanding the characteristics of the muffler system or each element of the system and for designing the muffler system.

  • PDF