• Title/Summary/Keyword: Muddy Deposition

Search Result 14, Processing Time 0.02 seconds

Environment of Deposition and Characters of Surface Sediments in the Nearshore off Byun-San Peninsula, Korea (변산반도 연근해 표층 퇴적물의 특성과 퇴적환경)

  • Oh, Jae-Kyung;Choi, Kyu-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.107-116
    • /
    • 1999
  • To study the characters of surface sediment and to describe the seasonal depositional environment as a result of sedimentation process off Byun-San Peninsula, a total 61 samples of surface sediment (32 samples in summer; 29 samples in winter) were collected and analysed. A digitized depth data from sea chart and echosounding profiles along five trans-sections were helpful for understanding the morphological factors. The types classified by the characters of surface sediment are type I (sand, S), type II (silty sand, zS), and type ill (sandy silt, sZ). Mean grain size varies from 2.11 to 7.81 ${\Phi}$. The positive-skewness shows the typical tide-dominated environment. The sediment type of the northwestern stations is medium sand and the sorting value is 0.5~1.4 ${\Phi}$ of well/moderately sorted. Meanwhile, other stations are composed of muddy sands and sandy muds transported from rivers and offshore. These sediment types toward inshore change gradually from silty sand to sandy silt. According to the C/M diagram, there are three major transport modes of sediment: bed load (Mode A), graded suspension (Mode B), and suspension (Mode C), correlating with north-eastern sandy area, middle part of silty-sand area, and southern sandy-silt area, respectively. The result of Principal Component Analysis shows also similar pattern of sediment types. In result, sediment texture of type III tends to be finer and more poorly-sorted than that of type II and sediment facies are correlateed with sedimentation process.

  • PDF

Architecture and Depositional Style of Gravelly, Deep-Sea Channels: Lago Sofia Conglomerate, Southeyn Chile (칠레 남부 라고 소피아 (Lago Sofla) 심해저 하도 역암의 층구조와 퇴적 스타일)

  • Choe Moon Young;Jo Hyung Rae;Sohn Young Kwan;Kim Yeadong
    • The Korean Journal of Petroleum Geology
    • /
    • v.10 no.1_2 s.11
    • /
    • pp.23-33
    • /
    • 2004
  • The Lago Sofia conglomerate in southern Chile is a lenticular unit encased within mudstone-dominated, deep-sea successions (Cerro Toro Formation, upper Cretaceous), extending from north to south for more than $120{\cal}km$. The Lago Sofia conglomerate is a unique example of long, gravelly deep-sea channels, which are rare in the modern environments. In the northern part (areas of Lago Pehoe and Laguna Goic), the conglomerate unit consists of 3-5 conglomerate bodies intervened by mudstone sequences. Paleocurrent data from these bodies indicate sediment transport to the east, south, and southeart. The conglomerate bodies in the northern Part are interpreted as the tributary channels that drained down the Paleoslope and converged to form N-S-trending trunk channels. In the southern part (Lago Sofia section), the conglomerate unit comprises a thick (> 300 m) conglomerate body, which probably formed in axial trunk channels of the N-5-trending foredeep trough. The well-exposed Lago Sofia section allowed for detailed investigation of sedimentary facies and large-scale architecture of the deepsea channel conglomerate. The conglomerate in Lago Sofia section comprises stratified conglomerate, massive-to-graded conglomerate, and diamictite, which represent bedload deposition under turbidity currents, deposition by high-density turbidity currents, and muddy debris flows, respectively. Paleocurrent data suggest that the debris flows originated from the failure of nearby channel banks or slopes flanking the channel system, whereas the turbidity currents flowed parallel to the orientation of the overall channel system. Architectural elements produced by turbidity currents represent vertical stacking of gravel sheets, lateral accretion of gravel bars, migration of gravel dunes, and filling of channel thalwegs and scoured hollows, similar to those in terrestrial gravel-bed braided rivers. Observations of large-scale stratal pattern reveal that the channel bodies are offset stacked toward the east, suggestive of an eastward migration of the axial trunk channel. The eastward channel migration is probably due to tectonic tilting related to the uplift of the Andean protocordillera just west of the Lago Sofia deep-sea channel system.

  • PDF

Distribution Patterns and Provenance of Surficial Sediments from Ieodo and Adjacent Sea (이어도와 주변 해역의 표층퇴적물 분포와 퇴적물 기원지)

  • Chang, Tae Soo;Jeong, Jong Ok;Lee, Eunil;Byun, Do-Seong;Lee, HwaYoung;Son, Chang Soo
    • Journal of the Korean earth science society
    • /
    • v.41 no.6
    • /
    • pp.588-598
    • /
    • 2020
  • The seafloor geology of Ieodo, a submerged volcanic island, has been poorly understood, although this place has gained considerable attention for ocean and climate studies. The main purpose of the study is to understand and elucidate types, distribution patterns and provenance of the surficial sediments in and around the Ieodo area. For this purpose, 25 seafloor sediments were collected using a box-corer, these having been analyzed for grain sizes. XRD (X-ray Diffraction) analysis of fine-grained sediments was conducted for characterizing clay minerals. The peak of Ieodo exists in the northern region, while in the southern area, shore platforms occur. The extensive platform in the south results from severe erosion by strong waves. However, the northern peak still survived from differential weathering. Grain size analyses indicated that gravels and gravelly sands with skeletons and shells were distributed predominantly on the volcanic apron and shore platform. Muddy sediments were found along the Ieodo and the adjacent deeper seafloor. Based on the analysis of clay mineral composition, illites were the most abundant in fine muds, followed by chlorites and kaolinites. The ratio plots of clay minerals for the provenance discrimination suggested that the Ieodo muds were likely to be derived from the Yangtze River (Changjiang River). As a consequence, gravels and gravelly sands with bioclastics may be supplied from the Ieodo volcanic apron by erosion processes. Wave activities might play a major role in transportation and sedimentation. In contrast, fine muds were assumed to be derived from the inflow of the Yangtze River, particularly in summer. Deposition in the Ieodo area is, therefore, probably controlled by the inflow from the Changjiang Dilute Water and summer typhoons from the south.

Summer-Time Behaviour and Flux of Suspended Sediments at the Entrance to Semi-Closed Hampyung Bay, Southwestern Coast of Korea (만 입구에서 부유퇴적물 거동과 플럭스: 한반도 서해 남부 함평만의 여름철 특성)

  • Lee, Hee-Jun;Park, Eun-Sun;Lee, Yeon-Gyu;Jeong, Kap-Sik;Chu, Yong-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 2000
  • Anchored measurements (12.5 hr) of suspended sediment concentration and other hydrodynamic parameters were carried out at two stations located at the entrance to Hampyung Bay in summer (August 1999). Tidal variations in water temperature and salinity were in the range of 26.0-27.9$^{\circ}C$ and 30.9-31.5, respectively, indicating exchange offshore and offshore water mass. Active tidal mixing processes at the entrance appear to destroy the otherwise vertical stratification in temperature and salinity in spite of strong solar heating in summer. On the contrary, suspended sediment concentrations show a marked stratification with increasing concentrations toward bottom layer. Clastic particles in suspended sediments consist mostly of very fine to fine silt (4-16 ${\mu}$m) with a poorly-sorted value of 14.7-25.9 ${\mu}$m. However, at slack time with less turbulent energy, flocs larger than 40 ${\mu}$m are formed by cohesion and inter-collision of particles, resulting in a higher settling velocity. Strong ebb-dominated and weak flood dominated tidal currents, in the southwestern and the northeastern part, respectively, result in a seaward residual flow of -10${\sim}$-20 cm $s^{-1}$ at station H1 and a bayward residual flow less than 5.0 cm $s^{-1}$ at station H2. However, mean concentration of suspended sediments at station H1 is higher at flood (95.0-144.1 mg $1^{-1}$) than in ebb (75.8-120.9 mg $1^{-1}$). On the contrary, at the station H2, the trend is reversed with higher concentration at the ebb (84.7-158.4 mg $1^{-1}$) than that at the flood (53.0-107.9 mg $1^{-1}$). As a result, seaward net suspended sediment fluxes ($f_{s}$) are calculated to be -1.7 ${\sim}$-$15.610^{3}$ kg $m^{-2}$ $s^{-1}$ through the whole water column. However, the stations H1 and H2 show definitely different values of the flux with higher ones in the former than in the latter. Alternatively, depth-integrated net suspended sediment loads ($\c{Q}_{s}$) for one tidal cycle are also toward the offshore with ranges of 0.37${\times}$$10^{3}$ kg $m^{-1}$ and 0.21${\times}$$10^{3}$ kg $m^{-1}$, at station H1 and H2, respectively. This seaward transport of suspended sediment in summer suggests that summer-time erosion in the Hampyung muddy tidal flats is a rather exceptional phenomenon compared to the general deposition reported for many other tidal flats on the west coast of Korea.

  • PDF