• Title/Summary/Keyword: Mucopolysaccharidosis type I

Search Result 11, Processing Time 0.016 seconds

A Case of Hunter Syndrome Presented with Chronic Purulent Rhinorrhea in 24-month-old Boy (24개월에 만성 화농성 비루를 주소로 내원하여 진단된 헌터 증후군 1례)

  • Kim, I An;Jin, Jang Yong;Park, Jae Ock;Hong, Yong Hee
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.3
    • /
    • pp.160-164
    • /
    • 2015
  • Hunter syndrome(Mucopolysaccharidosis type II, MPS type II) is an X-linked disorder of glycosaminoglycans (GAGs) metabolism caused by an iduronate-2-sulfatase (IDS2) deficiency. A 24-month-old boy visited the department of pediatrics with the chief compliant of chronic purulent rhinorrhea beginning at age one. He had a history of repeated acute otitis media and chronic rhinitis. On physical examination he had a coarse face, enlarged tongue, distended abdomen, joint stiffness, and Mongolian spots at his first visit. The urine GAGs level was elevated at 66.10 mg/mmolCr (reference range, <11.1) and iduronate-2-sulfatase activity in leukocyte was decreased at 0.21 nmol/mg protein/hr (reference range, 18.7-57). Finally with an IDS gene mutational analysis, recombinant known mutation between intron 7 and distal of exon 3 in IDS2 was detected. Recombinant iduronate-2-sulfatase therapy was started without any infusion related reactions. The author highlights the importance of suspecting Hunter syndrome when pediatric patients visit with chronic purulent rhinorrhea which is a common cause of hospital visits for infants and children.

DENTAL MANAGEMENT OF PATIENT WITH HUNTER SYNDROME (MUCOPOLYSACCHARIDOSIS TYPE II) : A CASE REPORT (Hunter 증후군 환아의 치과적 관리: 증례보고)

  • Lee, Min-Jeong;Kim, Jae-Gon;Yang, Yeon-Mi;Baik, Byeong-Ju;Song, Hee-Jeong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2012
  • Mucopolysaccharidosis (MPS) is a disorder which is caused by the defect of the lysosomal enzyme that is essentially needed for resolution of glycosaminoglycans (GAGs). Metabolite of GAGs will accumulate in the lysosome of cells and will result in the dysfunction of cells, tissues, and organs. Eventually, patients will manifest both mental retardation and physical disorders. In worst cases, mucopolysaccharidosis can cause premature death. The current clinical types have been classified as MPS from type I to type IX according to the defect of certain enzyme. The dental complications have been reported as delay of eruption, enamel hypoplasia, microdontia, malocclusion, condylar defects, gingival hyperplasia and dentigerous cystlike follicle. This clinical report presents the case of a boy with MPS type II, Hunter Syndrome which has various dental complications.

A Case of Mucopolysaccharidosis Type 2 Diagnosed Early through Brain MRI (뇌자기공명영상 검사를 통해 조기 발견된 제2형 뮤코다당증 1례)

  • Lee, Yoon kyoung;Cho, Sung Yoon;Kim, Jinsup;Huh, Rimm;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • Mucopolysaccharidosis (MPS) is an inherited disease entity associated with lysosomal enzyme deficiencies. MPS type 2, also known as Hunter syndrome, has a characteristic morphology primarily involving x-l inked recessive defects and iduronate-2-sulfatase gene mutation. The purpose of this case report is to provide important clues to help pediatricians identify Hunter syndrome patients earlier (i.e., before the disease progresses). A 30-month-old boy showed developmental delay and decreased speech ability. Physical examinations revealed a flat nose and extensive Mongolian spots. Brain magnetic resonance images (MRIs) showed bilateral multiple patchy T2 hyperintense lesions in the periventricular and deep white matter, several cyst-like lesions in the body of the corpus callosum, and diffuse brain atrophy, which were in keeping with the diagnosis. Based on these findings, the patient was suspected of having MPS. In the laboratory findings, although the genetic analysis of IDS (Iduronate-2-sulfatase) did not show any pathogenic variant, the enzymatic activity of IDS was not detected. We could confirm the diagnosis of MPS, because other sulfatases, such as ${\alpha}$-L-iduronidase, were detected in the normal range. Early enzymatic replacement therapy is essential and has a relatively good prognosis. Therefore, early diagnosis should be made before organ damage becomes irreversible, and brain MRIs can provide additional diagnostic clues to help distinguish the disorder.

Overview of Mucolipidosis Type II and Mucolipidosis Type III α/β

  • Kim, Su Jin
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.1-4
    • /
    • 2016
  • Mucolipidosis type II (MLII; MIM#252500) and type III alpha/beta (MLIIIA; MIM#252600) very rare lysosomal storage disease cause by reduced enzyme activity of GlcNAc-1-phosphotransferase. ML II is caused by a total or near total loss of GlcNAc-1-phosphotransferase activity whether enzymatic activity in patient with ML IIIA is reduced. While ML II and ML III share similar clinical features, including skeletal abnormalities, ML II is the more severe in terms of phenotype. ML III is a much milder disorder, being characterized by latter onset of clinical symptoms and slower progressive course. GlcNAc-1-phosphotransferase is encoded by two genes, GNPTAB and GNPTG, mutations in GNPTAB give rise to ML II or ML IIIA. To date, more than 100 different GNPTAB mutations have been reported, causing either ML II or ML IIIA. Despite development of new diagnostic approach and understanding of disease mechanism, there is no specific treatment available for patients with ML II and ML IIIA yet, only supportive and symptomatic treatment is indicated.

Effect of Enzyme Replacement Therapy on Growth in Korean Patients with Mucopolysaccharidosis Type I (I형 뮤코다당증 환자들에서 효소 보충 요법이 성장에 미치는 영향)

  • Huh, Rimm;Cho, Sung Yoon;Chang, Mi Sun;Lee, Jieun;Kwun, Younghee;Kim, Su Jin;Sohn, Young Bae;Park, Sung Won;Maeng, Se Hyun;Kwon, Eun-Kyung;Han, Sun Ju;Jung, Jooyoun;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.13 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • Purpose: Mucopolysaccharidosis type I (MPS I) is a lysosomal storage disorder caused by deficiency of the enzyme ${\alpha}$-L-iduronidase, which leads to a broad spectrum of multisystemic manifestations. Short stature and decreased growth velocity are prominent features of MPS I. The aim of the present study was to evaluate the effect of enzyme replacement therapy (ERT) on growth of Korean MPS I patients from a single center. Methods: Height data were obtained by retrospective chart review of 10 Korean patients with MPS I who had received ERT for a minimum of 3 years. Height was expressed as standard deviation scores (SDS) based on normative data. Annual growth rates were calculated before and during ERT. A piecewise regression model was used to analyze height z-scores before and after treatment. Individual analysis was performed for impact of phenotype [(severe (Hurler) versus attenuated (Hurler-Scheie, Scheie)] on growth. Results: Annual growth was 3.3 cm (z-score= -0.21) in the year before ERT and 6.2 cm (z-score= 0.17), 5.8 cm (z-score= 0.07), and 3.8 cm (z-score= -0.4) in the first, second, and third years of ERT, respectively. Regression analysis showed improvement in the slope after ERT (difference= 0.04; P=0.022). Estimated slope differences between severe and attenuated phenotypes were statistically significant before (P=0.001) and after treatment (P<0.0001), although no significant difference was noted when stratified by phenotype. Conclusion: ERT with aldurazyme appears to have a positive impact on linear growth in patients with MPS I.

  • PDF

Glutaric Aciduria Type I: Overview

  • Kim, Su Jin
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.5 no.1
    • /
    • pp.8-11
    • /
    • 2021
  • Glutaric aciduria type 1 (GA1; OMIM #231670) is a rare autosomal recessive-inherited neurometabolic disorder caused by the deficiency of glutaryl-CoA dehydrogenase (GCDH), which is encoded by the GCDH gene. It results in the accumulation of glutaric acid (GA), 3-hydroxyglutaric acid (3-OH-GA), glutaconic acid, and glutarylcarnitine (C5DC). These metabolites are considered to damage the striatum through an excitotoxic mechanism. The treatments of GA1 known to date are metabolic maintenance treatment based on a low-lysine diet and emergency treatment during acute illness. However, treatment after the onset of neurological symptoms has limited effectiveness and is associated with poor outcomes, and the effect of treatment and disease course after treatment are not good. After the implementation of newborn screening, the incidence of acute encephalopathic crisis fell to 10%-20% with early diagnosis, preventative dietary management, and aggressive medical intervention during acute episodes. Recently, several cohort studies have been published on the natural course and treatment of GA1 patients. This mini review will cover the clinical symptoms, natural history, and treatment of GA1 through a literature review.

Mucolipidosis Type II in Vietnam

  • Vu, Chi Dung
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.31-31
    • /
    • 2016
  • Purpose: To describle clinical features and enzyme activity of Vietnamese patients with Mucolipidosis type II. Methods: Clinical features, laboratory and plasma lysosom enzyme activity by 4 MU-Fluorometric assay was studied from 2014-2015 at the Northern referral center of Pediatrics - National Children's Hospital. Results: 16 cases (7 girls and 9 boys) were diagnosed with I-cell bases on clinical symptoms and enzyme activities studies. Diagnosis age was $5.93{\pm}4.28$ years, onset age was recognised from birth to 4 years (median 1.25) with the feature of joint stiffness and bone deformation. All cases presented with the feature of joint stiffness, chest deformation and kyphoscoliosis; Fifteen cases (93.7%) had coarse facial features. No patients had hepatosplenomegaly on abdominal ultrasound, 5/15 patients had heart valves disease. Enzyme assay showed ${\alpha}$-Hexosaminidase of $1,885.9{\pm}338.7$ (nmol/mg plasma/17 hrs), ${\alpha}$-Iduronate sulfatase of $4,534.8{\pm}1,062.9nmol/mg$ plasma/4 hrs). Conclusion: Mucolipidosis II seriously affected the life of the patients with skeletal deformities, contractures develop in all joints and cardiac involvement.

A Case of Hunter Syndrome Diagnosed at Age of 2.5 Year (2.5세에 진단된 헌터증후군 1례)

  • Choi, Miran;Kwun, Younghee;Jin, Dongkyu;Lee, Jieun
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.14 no.2
    • /
    • pp.178-181
    • /
    • 2014
  • Hunter syndrome (mucopolysaccharidosis type II, MPS II) is a X-linked lysosomal storage disease caused by a deficiency in the lysosomal enzyme, iduronate-2-sulfatase (IDS), leading to accumulation of glycosaminoglycans within lysosomes of many organs and tissues. Since the enzyme replacement therapy was approved and available in the treatment of MPS I, II, VI, early diagnosis and early therapy can bring the better prognosis of disease and the better quality of life in patients. We described a 2.5 year old child presented with frequent otitis media and developmental delay including speech impairment, who was diagnosed as Hunter syndrome with IDS NM_000202.5:c. 263G>A(p.Arg88His) mutation.

A case of simultaneously identified glycogen storage disease and mucopolysaccharidosis (당원병과 뮤코다당체침착증이 동시에 발견된 증례 1예)

  • Lee, Ju Young;Shim, Jeong Ok;Yang, Hye Ran;Chang, Ju Young;Shin, Choong Ho;Ko, Jae Sung;Seo, Jeong Kee;Kim, Woo Sun;Kang, Gyeong Hoon;Song, Jeong Han;Kim, Jong Won
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.6
    • /
    • pp.650-654
    • /
    • 2008
  • Glycogen storage disease (GSD) and mucopolysaccharidosis (MPS) are both independently inherited disorders. GSD is a member of a group of genetic disorders involving enzymes responsible for the synthesis and degradation of glycogen. GSD leads to abnormal tissue concentrations of glycogen, primarily in the liver, muscle, or both. MPS is a member of a group of inherited lysosomal storage diseases, which result from a deficiency in specific enzymatic activities and the accumulation of partially degraded acid mucopolysaccharides. A case of a 16-month-old boy who presented with hepatomegaly is reported. The liver was four finger-breadth-palpable. A laboratory study showed slightly increased serum AST and ALT levels. The liver biopsy showed microscopic features compatible with GSD. The liver glycogen content was 9.3% which was increased in comparison with the reference limit, but the glucose-6-phosphatase activity was within the normal limit. These findings suggested GSD other than type I. Bony abnormalities on skeletal radiographs, including an anterior beak and hook-shaped vertebrae, were seen. The mucopolysaccharide concentration in the urine was increased and the plasma iduronate sulfatase activity was low, which fulfilled the diagnosis criteria for Hunter syndrome (MPS type II). To the best of the authors' knowledge, this is the first case of GSD and Hunter syndrome being identified at the same time.

Prenatal Diagnosis of Mucolipidosis Type II: Comparison of Biochemical and Molecular Analyses

  • Kosuga, Motomichi;Okada, Michiyo;Migita, Osuke;Tanaka, Toju;Sago, Haruhiko;Okuyama, Torayuki
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.19-22
    • /
    • 2016
  • Purpose: Mucolipidosis type II (ML II), also known as I-cell disease is an autosomal recessive inherited disorder of lysosomal enzyme transport caused by a deficiency of the uridine diphosphate (UDP)-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase). Clinical manifestations are skeletal abnormalities, mental retardation, cardiac disease, and respiratory complications. A severely and rapidity progressive clinical course leads to death before 10 years of age. Methods/Results: In this study we diagnosed three cases of prenatal ML II in two different at-risk families. We compared two procedures -biochemical analysis and molecular analysis - for the prenatal diagnosis of ML II. Both methods require an invasive procedure to obtain specimens for the diagnosis. Biochemical analysis requires obtaining cell cultures from amniotic fluid for more than two weeks, and would result in a late diagnosis at 19 to 22 weeks of gestation. Molecular genetic testing by direct sequence analysis is usually possible when mutations are confirmed in the proband. Molecular analysis has an advantage in that it can be performed during the first-trimester. Conclusion: Molecular diagnosis is a preferable method when a prompt decision is necessary.