• 제목/요약/키워드: Mucin production

검색결과 106건 처리시간 0.02초

Adhesion Properties of Indigenous Dadih Lactic Acid Bacteria on Human Intestinal Mucosal Surface

  • Dharmawan, Jorry;Surono, Ingrid S.;Kun, Lee Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권5호
    • /
    • pp.751-755
    • /
    • 2006
  • Dadih is Indonesian traditional fermented buffalo milk believed by the natives to have beneficial effects on human health. This may be due to the probiotic properties possessed by the lactic acid bacteria (LAB) involved in its fermentation process. It was discovered that ten strains of dadih lactic isolates possessed some probiotic properties in vitro. In this study, the adhesion properties of dadih LAB, in comparison with documented probiotic strains, were investigated in vitro by using mucin extracted from human faeces and Caco-2 cells as the models for human intestinal mucosal surface and intestinal cells respectively. The adhesion results showed the distinction of Lactobacillus reuteri IS-27560 in adhering to both mucus layer and Caco-2 cells. The competition assay for adhesion to the mucus layer between dadih LAB and selected pathogens indicated the competence of Lactococcus lactis IS-16183 and Lactobacillus rhamnosus IS-7257 in significantly inhibiting the adhesion of Escherichia coli O157:H7. Accordingly, these two strains may be potential candidates for use as probiotic strains. Overall, the adhesion properties of all dadih LAB strains were relatively comparable to that of Lactobacillus casei Shirota and Lactobacillus rhamnosus GG, the documented probiotic strains.

파두유(巴豆油) 투여(投與)가 생쥐의 장관점액세포(腸管粘液細胞)에 미치는 영향(影響) (ADMINISTRATION OF CROTON OIL EFFECTED IN THE INTESTINAL MUCOUS CELL OF MICE)

  • 한경택
    • 대한한방내과학회지
    • /
    • 제1권1호
    • /
    • pp.98-106
    • /
    • 1976
  • In order to study the effect of croton oil on the mucous cell in the mice intestin the experimental animals were injected with 0.1gm body weight of croton oil through intraperitoneally. They were sacrificed by ether anesthesia and obtained from distal small intestine and duodenum and colon, and fixed in 10% meutral formal. After embedded in paraffin, sectioned in 5 micro thickness, and stained with P.A.S (Periodic Acid Schiffis) reaction. The average number of the mucous cell was counted in each specimen over 20 fields under 450 magnification. The following results were obtained; 1) An average number of mucous cell began rapidly increase from 15 min and reached high average number after injection of croton oil of mucous cell from 30-60 min after injection. 2) An average number of mucous cell rapidly increase after injection of croton oil and were not reduced normal level by time lapsed 48 hrs. 3) The mucous cell showed with tape of time after injection of croton oil. A type and B type decrease and showed recovery C type decrease and recovery. 4) According to the above findings, it is presumed that croton oil accelerate secretion of mucin of the mucouse cell and production of mucin in growing mucous cell.

  • PDF

Physiological understanding of host-microbial pathogen interactions in the gut

  • Lee, Sei-Jung;Choi, Sang Ho;Han, Ho Jae
    • 대한수의학회지
    • /
    • 제56권2호
    • /
    • pp.57-66
    • /
    • 2016
  • The gut epithelial barrier, which is composed of the mucosal layer and the intestinal epithelium, has multiple defense mechanisms and interconnected regulatory mechanisms against enteric microbial pathogens. However, many bacterial pathogens have highly evolved infectious stratagems that manipulate mucin production, epithelial cell-cell junctions, cell death, and cell turnover to promote their replication and pathogenicity in the gut epithelial barrier. In this review, we focus on current knowledge about how bacterial pathogens regulate mucin levels to circumvent the epithelial mucus barrier and target cell-cell junctions to invade deeper tissues and increase their colonization. We also describe how bacterial pathogens manipulate various modes of epithelial cell death to facilitate bacterial dissemination and virulence effects. Finally, we discuss recent investigating how bacterial pathogens regulate epithelial cell turnover and intestinal stem cell populations to modulate intestinal epithelium homeostasis.

The Alteration of Cytokine Expression and Goblet Cell Response by Cyclosporin A and Histamine Receptor Antagonists in C3H/HeN Mice Infected with Echinostoma hortense

  • Jo, Yong-Hee;Kim, In-Sik;Lee, Kyu-Jae;Kim, Jeong-Lye;Lee, Young-Mi;Cho, Kyung-Jin;Ryang, Yong-Suk
    • 대한의생명과학회지
    • /
    • 제12권4호
    • /
    • pp.329-335
    • /
    • 2006
  • Echinostoma hortense (E. hortense) is an intestinal trematode with the highest infection rate in South Korea. However, the immune response against E. hortense infection has not been explained well. In the present study, we investigated the effect of treatment with cyclosporin A (CsA) and histamine receptor antagonists on the cytokine expression and mucosal goblet cells in E. hortense-infected C3H/HeN mice. The alteration of cytokine mRNA expression ($TNF-{\alpha},\;IL-l{\beta},\;IL-4\;and\;IL-5$), intestinal worm recovery rate and goblet cell responses were measured weekly from 0 to 5 weeks post-infection (P.I.) in the control and the following three drug-treated groups: CsA, hydroxyzine and cimetidine. Compared with the control group, the expression of $TNF-{\alpha}$, IL-4 and IL-5 mRNAs decreased in the CsA- and hydroxyzine-treated groups, but only IL-4 mRNA expression did in the cimetidine-treated group. Worm recovery rate was significantly increased in the drug-treated groups. Mucosal goblet cells and their mucin response significantly decreased in the CsA-treated group (P<0.01), but significantly increased in the cimetidine- (P<0.05) and hydroxyzine- (P<0.01) treated groups. These data suggest that CsA treatment inhibits production of Th1- and Th2-type cytokines which are necessary for the worm expulsion. Histamine receptor increases goblet cells and their mucin activation, although it remains to be elucidated whether it directly affects the worm expulsion period of E. hortense in C3H/HeN mice.

  • PDF

Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica

  • Chang, Chi Huan;Teng, Po Yun;Lee, Tzu Tai;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권11호
    • /
    • pp.1797-1808
    • /
    • 2020
  • Objective: This study assessed the effects of probiotics on cecal microbiota, gene expression of intestinal tight junction proteins, and immune response in the cecal tonsil of broiler chickens challenged with Salmonella enterica subsp. enterica. Methods: One-day-old broiler chickens (n = 240) were randomly allocated to four treatments: negative control (Cont), multi-strain probiotic-treated group (Pro), Salmonella-infected group (Sal), and multi-strain probiotic-treated and Salmonella-infected group (ProSal). All chickens except those in the Cont and Pro groups were gavaged with 1×108 cfu/mL of S. enterica subsp. enterica 4 days after hatching. Results: Our results indicated that body weight, weight gain, and feed conversion ratio of birds were significantly reduced (p<0.05) by Salmonella challenge. Chickens challenged with Salmonella decreased cecal microbial diversity. Chickens in the Sal group exhibited abundant Proteobacteria than those in the Cont, Pro, and ProSal groups. Salmonella infection downregulated gene expression of Occludin, zonula occludens-1 (ZO1), and Mucin 2 in the jejunum and Occludin and Claudin in the ileum. Moreover, the Sal group increased gene expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), IL-1β, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) and reduced levels of transforming growth factor-β4 and IL-10 compared with the other groups (p<0.05). However, chickens receiving probiotic diets increased Lactobacillaceae abundance and reduced Enterobacteriaceae abundance in the ceca. Moreover, supplementation with probiotics increased the mRNA expression of Occludin, ZO1, and Mucin 2 in the ileum (p<0.05). In addition, probiotic supplementation downregulated the mRNA levels of IFN-γ (p<0.05) and LITAF (p = 0.075) and upregulated IL-10 (p = 0.084) expression in the cecal tonsil. Conclusion: The administration of multi-strain probiotics modulated intestinal microbiota, gene expression of tight junction proteins, and immunomodulatory activity in broiler chickens.

Production of a anti-MUC1 monoclonal antibody using a glutathione- S-transferase-MUC1 bacterial fusion protein.

  • Park, Kyu-Hwan;Shin, Chan-Young;You, Byung-Kwon;Ko, Kwang-Ho
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.198-198
    • /
    • 1998
  • Muc1 mucin is found in a variety of epithelial tissue and is overexpressed in several epithelial cancer. Recently it is alsol reported that primary Hamster tracheal surface epithelial(HTSE) cells express Muc1 protein and cDNA encoding HTSE muc1 protein has been cloned. Although numerous monoclonal antibodies (mAbs) to human muncins, particularly Muc1 have been produced, no such antibodies to murine Muc1 have been described. We now describe monoclonal antibody, called mAb M1CT, produced to C-terminal region of HTSE Muc1 protein by immunising mice with a glutathion-s-transferase linked fusion protein. In this study, using this antibody(mAb M1CT) we investigated the effect of RA on the expression of Muc1 in HTSE cells. Retinoic acid(RA) plays an essential role in maintaining normal differentiation of tracheal epithelial cells. With RA-deficiency tracheocytes undergo squamous metaplasia, an abnormal differentiation that can be reversed by RA. We had primary culture of HTSE cells under different concentrations of RA. Culture was maintained until the direction of differentiation was determined. Then Western blot analysis with mAb M1CT was performed with the cell lysates from the culture. The expression of Muc1 protein was decreased in dose-dependent manner as the concentration of retinoic acid was decreased. Our result indicates that the expression of Muc1 protein is coordinately regulated with airway mucous cell differentiation by RA pathway. And the antibody, mAb M1CT, produced in this study should provide useful tool to study the expression of Muc1 mucin in differentiation process or disease.

  • PDF

Mucin2 is Required for Probiotic Agents-Mediated Blocking Effects on Meningitic E. coli-Induced PathogenicitiesS

  • Yu, Jing-Yi;He, Xiao-Long;Puthiyakunnon, Santhosh;Peng, Liang;Li, Yan;Wu, Li-Sha;Peng, Wen-Ling;Zhang, Ya;Gao, Jie;Zhang, Yao-Yuan;Boddu, Swapna;Long, Min;Cao, Hong;Huang, Sheng-He
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권10호
    • /
    • pp.1751-1760
    • /
    • 2015
  • Mucin2 (MUC2), an important regulatory factor in the immune system, plays an important role in the host defense system against bacterial translocation. Probiotics known to regulate MUC2 gene expression have been widely studied, but the interactions among probiotic, pathogens, and mucin gene are still not fully understood. The aim of this study was to investigate the role of MUC2 in blocking effects of probiotics on meningitic E. coli-induced pathogenicities. In this study, live combined probiotic tablets containing living Bifidobacterium, Lactobacillus bulgaricus, and Streptococcus thermophilus were used. MUC2 expression was knocked down in Caco-2 cells by RNA interference. 5-Aza-2'-deoxycytidine (5-Aza-CdR), which enhances mucin-promoted probiotic effects through inducing production of Sadenosyl-L-methionine (SAMe), was used to up-regulate MUC2 expression in Caco-2 cells. The adhesion to and invasion of meningitic E. coli were detected by competition assays. Our studies showed that probiotic agents could block E. coli-caused intestinal colonization, bacteremia, and meningitis in a neonatal sepsis and meningitis rat model. MUC2 gene expression in the neonatal rats given probiotic agents was obviously higher than that of the infected and uninfected control groups without probiotic treatment. The prohibitive effects of probiotic agents on MUC2-knockdown Caco-2 cells infected with E44 were significantly reduced compared with nontransfected Caco-2 cells. Moreover, the results also showed that 5-Aza-CdR, a drug enhancing the production of SAMe that is a protective agent of probiotics, was able to significantly suppress adhesion and invasion of E44 to Caco-2 cells by upregulation of MUC2 expression. Taken together, our data suggest that probiotic agents can efficiently block meningitic E. coli-induced pathogenicities in a manner dependent on MUC2.

IP-10에 의한 기도상피세포에서의 TNF-α 유도 MUC5AC발현 억제: 특발성폐섬유증 환자의 적은 객담과의 연관성 (IP-10 Decreases TNF-α Induced MUC5AC Expression in Human Airway Epithelial Cells: a Possible Relation with Little Sputum Production in Idiopathic Pulmonary Fibrosis)

  • 김승준;강춘미;유문빈;윤형규;김영균;김관형;문화식;박성학;송정섭
    • Tuberculosis and Respiratory Diseases
    • /
    • 제64권5호
    • /
    • pp.347-355
    • /
    • 2008
  • 연구배경: 특발성폐섬유증 환자의 전형적인 증상은 운동호흡곤란과 마른기침으로, 객담이 적은 원인에 대해서 아직까지 잘 알려져 있지 않다. Interferon-${\gamma}$ inducible protein-10 (IP-10)은 여러 호흡기질환과 관련되는데 폐 내로 염증을 유입시키는데 중요한 역할을 한다. 본 연구는 특발성폐섬유증 환자에서 객담이 적은 기전으로 IP-10이 연관성이 있는지에 대해 연구하였다. 방법: 특발성폐섬유증 환자를 대상으로 기관지폐포세척액에서 IP-10의 농도를 ELISA로 측정하였다. IP-10이 기도 점액소 발현에 미치는 영향을 간접적으로 알아보기 위해 NCI-H292 세포(점막표피모양 암종 세포주)에서 IP-10을 전처치한 이후 tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)로 자극하여 발현정도를 측정하였다. 이때 점액소 발현과 관련되는 기전으로 epidermal growth factor receptor-mitogen activated protein kinase (EGFR-MAPK)의 신호전달 경로를 알아 보았다. 결과: IP-10의 기관지폐포세척액내 농도는 특발성폐섬유증 환자가 건강 대조군에 비해 유의하게 높았다. IP-10의 전처치는 NCI-H292 세포에서 TNF-${\alpha}$ 유도 MUC5AC 점액소 발현을 감소시켰는데 이 때 EGFR-MAPK 신호전달 경로의 차단과 관련되었다. 결론: 특발성폐섬유증 환자의 적은 객담은 IP-10의 발현증가와 일부 관련 가능성이 있으며, 이때 IP-10의 작용은 MUC5AC 점액소 유전자 발현에 필요한 EGFR-MAPK 신호전달 경로의 차단과 관련될 것으로 생각한다.

Isolation of Weissella strains as potent probiotics to improve antioxidant activity of salted squid by fermentation

  • Le, Bao;Yang, Seung Hwan
    • Journal of Applied Biological Chemistry
    • /
    • 제61권1호
    • /
    • pp.93-100
    • /
    • 2018
  • The aim of this study was to enhance the antioxidant activity of salted squid by inoculation of two Weissella spp. strains (W. cibaria FB-069 and W. viridescens FB-077) isolated from traditional Korea salted squid. The safety and probiotic potential characteristics of these two strains were evaluated. The safety of these strains was analyzed based on hemolytic activity, mucin degradation, biogenic amino production, and resistance to antibiotics. These lactic acid bacteria showed probiotic potential, including resistance to gastrointestinal tract conditions, adhesion to Caco-2 cells, and aggregation. The low-salted squid fermented with Weissella strains had consistently higher antioxidant activity through changing their amino acid profiles. Therefore, W. cibaria FB-069 and W. viridescens FB-077 might be good candidates for fermentation of salted squid to develop functional food with enhanced health benefits.

Recent Advances in the Development of Novel Drug Candidates for Regulating the Secretion of Pulmonary Mucus

  • Li, Xin;Jin, Fengri;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • 제28권4호
    • /
    • pp.293-301
    • /
    • 2020
  • Hypersecretion of pulmonary mucus is a major pathophysiological feature in allergic and inflammatory respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD). Overproduction and/or oversecretion of mucus cause the airway obstruction and the colonization of pathogenic microbes. Developing a novel pharmacological agent to regulate the production and/or secretion of pulmonary mucus can be a useful strategy for the effective management of pathologic hypersecretion of mucus observed in COPD and asthma. Thus, in the present review, we tried to give an overview of the conventional pharmacotherapy for mucus-hypersecretory diseases and recent research results on searching for the novel candidate agents for controlling of pulmonary mucus hypersecretion, aiming to shed light on the potential efficacious pharmacotherapy of mucus-hypersecretory diseases.