• Title/Summary/Keyword: Mucin production

Search Result 104, Processing Time 0.034 seconds

Effect of Intestinal Function Enhancer (KTG075) on Mucin 2 Secretion (장기능개선제-신소재(KTG075)의 대장관 내 mucin 2 분비에 미치는 영향)

  • Lee, You-Hui;Baik, Soon-Ok;Kim, Hyun-Kyung;Ryu, Myung-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.991-994
    • /
    • 2004
  • Effects of formulation KTG075 from edible plants on intestinal function, particularly on Mucin 2 secretion, were examined by loperamide-induced constipation method using Sprague Dawley rats (SD rats, male). Crypt epithelial cells containing more mucus and mucus layer stained with alcian blue were significantly thicker in KTG075 group than control group. When Biogenex AM358 of antibody against Mucin 2 was used, crypt epithelial cells secreted more Mucin 2 in KTG075 group than control group. The Mucus layer at fecal surface was thinner and less mucus was recovered from mucosal surface in constipated rats than in KTG075 group. Mucus production of crypt epithelial cells and mucus contents at fecal and mucosal surfaces were reduced by loperamide-induced constipation. These results indicate formula KTG075 accelerates evacuation and activates intestines.

Diclofenac Inhibits Phorbol Ester-Induced Gene Expression and Production of MUC5AC Mucin via Affecting Degradation of IkBα and Translocation of NF-kB p65 in NCI-H292 Cells

  • Jin, Fengri;Li, Xin;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.431-436
    • /
    • 2020
  • In this study, diclofenac, a non-steroidal anti-inflammatory drug, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. The human respiratory epithelial NCI-H292 cells were pretreated with diclofenac for 30 min and stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of diclofenac on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also investigated. Diclofenac suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest diclofenac regulates the gene expression and production of mucin through regulation of NF-kB signaling pathway, in human airway epithelial cells.

Effect of Haepyoijin-tang on Airway Mucin Secretion, Production, Gene Expression and Hypersecretion of Mucus (해표이진탕이 기도 뮤신의 분비, 생성 및 유전자 발현에 미치는 영향)

  • Suk, Yun Hee;Min, Sang Yeon;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.65-79
    • /
    • 2015
  • Objectives : In this study, effects of haepyoijintang (HIJ) on the increase in airway epithelial mucosubstances of rats and ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells were investigated. Methods : Hypersecretion of airway mucus was induced by exposure of rats to $SO_2$ during 3 weeks. Effect of orally-administered HIJ during 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats was evaluated using histopathological analysis after staining the epithelial tissue with PAS-alcian blue. Possible cytotoxicity of HIJ was evaluated by examining the potential damage of kidney and liver functions by measuring serum GOT/GPT activities and serum BUN and creatinine concentrations of rats and the body weight gain during experiment, after administering HIJ orally. At the same time, the effect of HIJ on ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of HIJ and treated with ATP ($200{\mu}M$), PMA (10 ng/ml), EGF (25 ng/ml) or TNF-${\alpha}$ (0.2 nM) for 24 hrs, to evaluate the effect of HIJ both on ATP-, PMA-, EGF- or TNF-${\alpha}$-induced MUC5AC mucin production using enzyme-linked immunosorbent assay (ELISA) and on gene expression by the same inducers using reverse transcription-polymerase chain reaction (RT-PCR). Results : (1) HIJ decreased the amount of intraepithelial mucosubstances of trachea of rats. (2) HIJ did not show renal and hepatic toxicities and did not affect body weight gain of rats during experiment. (3) HIJ significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions from NCI-H292 cells. (4) HIJ significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin gene expression from NCI-H292 cells. Conclusions : The result from the present study suggests that HIJ might control the production and gene expression of airway mucin observed in various respiratory diseases accompanied by mucus hypersecretion and do not show in vivo toxicity to liver and kidney functions after oral administration. Effect of HIJ with their diverse components should be further investigated using animal experimental models that can reflect the pathophysiology of airway diseases through future studies.

Effects of Morus alba L. and Natural Products Including Morusin on In Vivo Secretion and In Vitro Production of Airway MUC5AC Mucin

  • Lee, Hyun Jae;Ryu, Jiho;Park, Su Hyun;Woo, Eun-Rhan;Kim, A Ryun;Lee, Sang Kook;Kim, Yeong Shik;Kim, Ju-Ock;Hong, Jang-Hee;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.2
    • /
    • pp.65-72
    • /
    • 2014
  • Background: It is valuable to find the potential activity of regulating the excessive mucin secretion by the compounds derived from various medicinal plants. We investigated whether aqueous extract of the root bark of Morus alba L. (AMA), kuwanon E, kuwanon G, mulberrofuran G, and morusin significantly affect the secretion and production of airway mucin using in vivo and in vitro experimental models. Methods: Effect of AMA was examined on hypersecretion of airway mucin in sulfur dioxide-induced acute bronchitis in rats. Confluent NCI-H292 cells were pretreated with ethanolic extract, kuwanon E, kuwanon G, mulberrofuran G, or morusin for 30 minutes and then stimulated with phorbol 12-myristate 13-acetate (PMA) for 24 hours. The MUC5AC mucin secretion and production were measured by enzyme-linked immunosorbent assay. Results: AMA stimulated the secretion of airway mucin in sulfur dioxide-induced bronchitis rat model; aqueous extract, ethanolic extract, kuwanon E, kuwanon G, mulberrofuran G and morusin inhibited the production of MUC5AC mucin induced by PMA from NCI-H292 cells, respectively. Conclusion: These results suggest that extract of the root bark and the natural products derived from Morus alba L. can regulate the secretion and production of airway mucin and, at least in part, explains the folk use of extract of Morus alba L. as mucoregulators in diverse inflammatory pulmonary diseases.

Effect of Wood Vinegar Produced from Morus alba on Hypersecretion of Airway Mucus (상지(桑枝) 목초액이 호흡기 객담 과다분비에 미치는 영향)

  • Kim, Ho;Jung, Hye-Mi;Kim, Sol-Li;Seo, Un-Kyo
    • The Journal of Internal Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.650-666
    • /
    • 2010
  • Objectives : In this study, the author tried to investigate whether wood vinegar produced from Morus alba (MA) significantly affects the increase in airway epithelial mucosubstances and hyperplasia of tracheal goblet cells of rats, and in vitro airway mucin secretion and PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production / gene expression from human airway epithelial cells. Materials and Methods : For the in vivo experiment, the author induced hypersecretion of airway mucus and goblet cell hyperplasia by exposure of rats to SO2 over 3 weeks. Effect of orally-administered MA over 2 weeks on increase in airway epithelial mucosubstances from tracheal goblet cells of rats and hyperplasia of goblet cells were assessed using histopathological analysis after staining the epithelial tissue with alcian blue. For the in vitro experiment, confluent RTSE cells were chased for 30 min in the presence of MA to assess the effect of MA on mucin secretion by enzyme-linked immunosorbent assay (ELISA). Also, effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of MA and treated with PMA (10 ng/ml), EGF (25 ng/ml) or TNF-alpha (0.2 nm) for 24 hrs, to assess both effects of MA on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production by enzyme-linked immunosorbent assay (ELISA) and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). Possible cytotoxicities of MA in vitro were assessed by examining LDH release from RTSE cells and the rate of survival and proliferation of NCI-H292 cells. In vivo liver and kidney toxicities of MA were evaluated by measuring serum GOT/GPT activities and serum BUN/creatinine concentrations of rats after administering MA orally. Results : 1. MA decreased the amount of intraepithelial mucosubstances of rats exposed to sulfur dioxide inhalationally. 2. MA decreased in vitro mucin secretion from cultured RTSE cells. 3. MA significantly inhibited PMA-, EGF-, and TNF-alpha-induced MUC5AC mucin productions and the expression levels of MUC5AC mRNA from NCI-H292 cells. 4. MA did not show either in vitro or in vivo hepatic or renal toxicities. Conclusion : The results from this study suggests that MA can regulate the secretion, production and gene expression of airway mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion and does not show in vivo toxicity to liver and kidney functions after oral administration. Effects of MA should be further studied using animal experimental models that simulate the diverse pathophysiology of respiratory diseases via future research.

Effects of Several Oriental Medicines on Protein Kinase C Activator-Induced Production and Gene Expression of Airway Mucin and Animal Model for Airway Mucus Hypersecretion (단백질인산화효소 C 활성화제로 유도된 기도 뮤신 생성 및 유전자 발현과 점액 과분비 모델동물에 대한 수종(數種) 방제의 영향)

  • Lim, Do-Hee;Park, Yang-Chun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.6
    • /
    • pp.1500-1508
    • /
    • 2008
  • The author investigated whether Chwiyeon-tang(PC), Haengso-tang(PH), Jawanchihyo-san(PJ) and Gamisocheongryong-tang(PS) significantly affect both PMA-induced mucin production and MUC5AC gene expression in airway epithelial cells and sulfur-dioxide-induced airway goblet cell hyperplasia and mucus hypersecretion animal model using rat. Possible cytotoxicity of each herbal medicine was assessed by measuring the survival and proliferation rate of NCI-H292 cells. Confluent NCI-H292 cells were pretreated for 30 min in the presence of PC, PH, PJ and PS, respectively, and treated with PMA(10 $ng/m{\ell}$), to assess the effect of each herbal medicine on PMA-induced mucin production by enzyme-linked immunosorbent assay(ELISA). Effects of each herbal medicine on PMA-induced MUC5AC gene expression from the same cells were investigated. Also, hypersecretion of airway mucus and goblet cell hyperplasia were induced by exposure of rats to $SO_2$ during 3 weeks. Effects of orally-administered PC, PH, PJ and PS during 1 week on intraepithelial mucosubstances and hyperplasia of goblet cells were examined using histological analysis after staining the epithelial tissue with PAS-alcian blue. (1) PC, PJ, PS and PH did not show significant effects on the survival and proliferation of NCI-H292 cells ; (2) PC, PJ and PS significantly decreased PMA-induced mucin production from NCI-H292 cells ; (3) PC, PJ and PS significantly inhibit the expression levels of PMA-induced MUC5AC gene in NCI-H292 cells ; (4) Among PC, PJ, PS and PH, only PS decreased $SO_2$-induced hyperplasia of airway goblet cells and intraepithelial mucosubstances. This result suggests that PC, PJ and PS can not only affect the production of mucin but also affect the expression of mucin gene and this can explain, at least in part, the traditional use of PC, PJ and PS for controlling airway diseases showing hypersecretion of mucus in oriental medicine.

Studies on the Air-Liquid Interface Culture as an Experimental Model for Physiology and Pharmacology of Tracheal Epithelial Cells (기관(氣管) 상피세포 생리 및 약리 실험모델로서의 공기-액체 접면 일차배양법 연구)

  • 이충재;이재흔;석정호;허강민
    • Biomolecules & Therapeutics
    • /
    • v.10 no.4
    • /
    • pp.281-286
    • /
    • 2002
  • In this study, we intended to get a preliminary data for establishing rat tracheal surface epithelial(RTSE) cell culture system as an experimental model for physiology and pharmacology of tracheal epithelial cells. Primary culture on the membrane support and application of the air-liquid interface system at the level of cell layer were performed. The cell growth rate and mucin production rate were measured according to the days in culture. The results were as follows: this culture system was found to manifest mucocilliary differentiation of rat tracheal epithelial cells, the cells were confluent and the quantity of produced and released mucin was highest on culture day 9, the mucin was mainly released to the apical side and tbe free $^3{H}$-glucosamine which was not incorporated to process of synthesis of mucin was left on the basolateral side. Taken together, we suggest that air-liquid interface culture system can be used as a substitute for immersion culture system and as an experimental model for in vivo mucus-hypersecretory diseases.

Involvement of IKK/IkBα/NF-kB p65 Signaling into the Regulative Effect of Engeletin on MUC5AC Mucin Gene Expression in Human Airway Epithelial Cells

  • Hossain, Rajib;Kim, Kyung-il;Li, Xin;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.473-478
    • /
    • 2022
  • In this study, we examined whether engeletin exerts an effect on the gene expression of MUC5AC mucin, in human pulmonary epithelial NCI-H292 cells. The cells were pretreated with engeletin for 30 min and stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of engeletin on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also investigated. Engeletin suppressed the mRNA expression and production of MUC5AC mucin, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest engeletin inhibits the gene expression of mucin through regulation of NF-kB signaling pathway, in human airway epithelial cells.

Effect of Pyunkang-tang on Inflammatory Aspects of Chronic Obstructive Pulmonary Disease in a Rat Model

  • Seo, Hyo-Seok;Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.103-110
    • /
    • 2019
  • We investigated the anti-inflammatory effect of Pyunkang-tang extract (PGT), a complex herbal extract based on traditional Chinese medicine that is used in Korea for controlling diverse pulmonary diseases, on cigarette smoke-induced pulmonary pathology in a rat model of chronic obstructive pulmonary disease (COPD). The constituents of PGT were Lonicerae japonica, Liriope platyphylla, Adenophora triphilla, Xantium strumarinum, Selaginella tamariscina and Rehmannia glutinosa. Rats were exposed by inhalation to a mixture of cigarette smoke extract (CSE) and sulfur dioxide for three weeks to induce COPD-like pulmonary inflammation. PGT was administered orally to rats and pathological changes to the pulmonary system were examined in each group of animals through measurement of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and interleukin-6 (IL-6) levels in bronchoalveolar lavage fluid (BALF) at 21 days post-CSE treatment. The effect of PGT on the hypersecretion of pulmonary mucin in rats was assessed by quantification of the amount of mucus secreted and by examining histopathologic changes in tracheal epithelium. Confluent NCI-H292 cells were pretreated with PGT for 30 min and then stimulated with CSE plus PMA (phorbol 12-myristate 13-acetate), for 24 h. The MUC5AC mucin gene expression was measured by RT-PCR. Production of MUC5AC mucin protein was measured by ELISA. The results were as follows: (1) PGT inhibited CSE-induced pulmonary inflammation as shown by decreased TNF-${\alpha}$ and IL-6 levels in BALF; (2) PGT inhibited the hypersecretion of pulmonary mucin and normalized the increased amount of mucosubstances in goblet cells of the CSE-induced COPD rat model; (3) PGT inhibited CSE-induced MUC5AC mucin production and gene expression in vitro in NCI-H292 cells, a human airway epithelial cell line. These results suggest that PGT might regulate the inflammatory aspects of COPD in a rat model.

Effect of Jaeumganghwa-tang on Production and Secretion of Respiratory Mucus (자음강화탕(滋陰降火湯)이 호흡기 점액의 생성 및 분비에 미치는 영향)

  • Cheon, Jin Hong;Min, Sang Yoen;Kim, Jang Hyun
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.31-46
    • /
    • 2016
  • Objectives In this study, the effects of Ja-eum-gang-hwa-tang (JGT) on the increase in airway epithelial mucosubstances of rats and ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells were investigated. Materials and Methods Hypersecretion of airway mucus was produced by exposure of $SO_2$ to rats for 3 weeks. The effect of orally-administered JGT for 2 weeks on increased epithelial mucosubstances from tracheal goblet cells of rats was assessed by using histopathological analysis after staining the epithelial tissue with Hematoxylin-eosin and PAS-alcian blue. Possible cytotoxicity of JGT was assessed by investigating the potential damage on kidneys and liver functions by measuring serum GOT/GPT activities and serum BUN concentration of rats and the body weight gain during experiment. Also, the effect of JGT on ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of JGT and treated with ATP ($200{\mu}M$) or PMA ($10ng/ml$) or EGF ($25ng/ml$) or TNF-${\alpha}$ (0.2 nM) for 24 hrs to assess the effect of JGT both on ATP- or PMA- or EGF- or TNF-${\alpha}$-induced MUC5AC mucin production by using enzyme-linked immunosorbent assay (ELISA) and on gene expression by the same inducers using reverse transcription-polymerase chain reaction (RT-PCR). Results (1) JGT decreased the amount of intraepithelial mucosubstances of trachea of rats. (2) JGT did not show any renal and hepatic toxicities, and did not affect body weights either. (3) JGT significantly inhibited ATP-, PMA-, EGF-, and TNF-${\alpha}$-induced MUC5AC mucin productions from NCI-H292 cells. (4) JGT inhibited EGF-, and PMA-induced expression levels of MUC5AC gene in NCI-H292 cells. However, ATP- and TNF-${\alpha}$-induced MUC5AC gene expression levels were not affected in NCI-H292 cells. Conclusions The result from the present study suggests that JGT might control the production and gene expression of airway mucin observed in various respiratory diseases which accompanied by mucus hypersecretion. Also, JGT did not show liver toxicity or impact on kidney functions. The effect of JGT should be further studied by using animal experimental models which can show proper pathophysiology of airway diseases.