• Title/Summary/Keyword: Mt. Baegdu

Search Result 4, Processing Time 0.014 seconds

A Case Analysis of Volcanic Ash Dispersion under Various Volcanic Explosivity Index of the Mt. Baegdu (백두산 분화 강도에 따른 화산재 확산 사례 분석)

  • Lee, Soon-Hwan;Jang, Eun-Suk;Lee, Hyun-Mi
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.280-293
    • /
    • 2012
  • In order to clarify the characteristics of dispersion of volcanic tephra emitted from the Mt. Baegdu with various eruption environment, numerical analysis were performed using numerical models, Weather Research and Forecast (WRF) and FLEXPART. Synoptic conditions at 12 October 2010 was adopted because the volcanic ash of Mt. Baegdu can reach the Korean peninsula and its dispersion pattern was compared with different Volcanic Explosivity Index (VEI) and particle size. Predominant size of falling out ash flowing in the peninsular is smaller than 0.5 mm and the ash large than the size is difficult to get in the peninsular due to the its weak ability of truculent diffusion. the difference of ash distribution with various VEI scenarios is not so much but number density of ash in the air is dramatically changed. Volcanic ash tends to be deposited easily in eastern coastal area such as Gangneung and Busan, because of the inflow of ash from East Sea and barrier effect of the Taeback mountains along the east coast of the Korean Peninsula. Accumulated amount of ash deposition can be increased in short period in several urban areas.

A Technical Note on Monitoring Methods for Volcanic Gases (화산가스의 채취 및 분석에 대한 기술보고)

  • Lee, Seungyeol;Lee, Sangchul;Yang, Kyounghee;Jeong, Hoon Young
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.415-429
    • /
    • 2012
  • The monitoring methods for volcanic gases are divided into remote sensing and direct gas sampling approaches. In the remote sensing approach, COSPEC and Li-COR are used to measure $SO_2$ and $CO_2$, respectively, with FT-IR for detection of a range of volcanic gases. However, the remote sensing approach is not applicable to Mt. Baegdu, where the atmospheric contents of volcanic gases are very low as a result of the strong interaction of volcanic gases with the nearby surface water and groundwater. On the other hand, the direct gas sampling approach involves the collection of volcanic gases from volcanic vents or fumaroles and the subsequent laboratory analysis, thus making it possible to measure even very low levels of volcanic gases. The direct sampling approach can be subdivided into the evacuated bottle method and the flow-through bottle method. In applying both methods, sampling bottles typically contain reaction media to trap specific volcanic gases. For example, NaOH solution(Giggenbach bottle), $NH_4OH$ solution, and acid condensates have been experimented for volcanic gas sampling. Once taken from vents and fumaroles, the samples of volcanic gases are pretreated and subsequently analyzed for volcanic gases using GC, IC, HPLC, titrimetry, TOC-IC, or ICP-MS. Recently, there has been the increasing number of evidences on the potential volcanic activity of Mt. Baegdu. However, little technical development has been made for the sampling and analysis of volcanic gases in Korea. In the present work, we reviewed various volcanic gas monitoring methods, and provided the detailed information on the monitoring methods applied to Mt. Baegdu.

Volcanological Interpretation of Historic Record of Ash Cloud Movement from Mt. Baegdu Volcano on October 21, 1654 (백두산 화산의 1654년 10월 21일 화산재구름 이동 기록에 대한 화산학적 고찰)

  • Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The volcanic history of the volcanic ash cloud movement recorded in the annals of the Choson dynasty in 1654, presumably due to explosive eruptions from Mt. Baekdu volcano. On October 21, 1654, volcanic ash and volcanic gas erupted from Mt. Baekdu could be interpreted as volcanic ash, which was transported to low altitude by winds of north and northeast winds and descended to the south of the peninsula along with volcanic ash clouds. The affected area appeared northward in the southern boundary of Hamgyeongdo, which is estimated to have moved the volcanic ash from Mt. Baekdu to the south of the Korean peninsula. Clouds of volcanic ash have passed through Jeokseong and Jangdan area, Gyeonggido about 500 km away from Mt. Baekdu. This is interpreted as a result of the formation of a volcanic ash cloud along the ground in a curved shape due to the influence of the prevailing wind, which was formed by Plinian-type eruption at Mt. Baekdu. This is reproduced by numerical simulations on the similar weather pattern model.

Surface Deformation and Behavior of Magma Activity Using EDM (EDM을 활용한 지표변화율과 마그마 활동 양상 변화 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.71-81
    • /
    • 2013
  • Measuring the distance between benchmarks placed on a volcano tens to thousands of meters apart can sometimes pinpoint where and when magma is rising toward the surface. Rising magma will sometimes push overlying rocks upward or shove them aside. In either case, one part of the volcano may actually move horizontally relative to another part from as little as a few millimeters to as much as several tens of meters. The challenge in measuring such changes with an electronic distance meter is putting benchmarks in the right places and making frequent measurements between pairs of benchmarks. An electronic distance meter is an instrument that both sends and receives an electromagnetic signal. Depending on the distance between the EDM and reflector, the wavelength of the returned signal will be out of phase with the transmitted signal. The instrument compares the phase of the transmitted and received signals and measures the phase difference electronically. There is a wide range of EDM capabilities in range and precision, but for volcano monitoring purposes, short-range (less than 10 km) to medium-range (less than 50 km) EDM's are typically used. Short-range EDM's transmit and receive the near visible infrared part of the electromagnetic spectrum for measuring distances with an accuracy of about 5 mm.