• Title/Summary/Keyword: Moving target tracking

Search Result 251, Processing Time 0.023 seconds

X-band Pulsed Doppler Radar Development for Helicopter (헬기 탑재 X-밴드 펄스 도플러 레이다 시험 개발)

  • Kwag Young-Kil;Choi Min-Su;Bae Jae-Hoon;Jeon In-Pyung;Hwang Kwang-Yun;Yang Joo-Yoel;Kim Do-Heon;Kang Jung-Wan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.773-787
    • /
    • 2006
  • An airborne radar is an essential aviation electronic system for the aircraft to perform various civil and/or military missions in all weather environments. This paper presents the design, development, and test results of the multi-mode X-band pulsed Doppler radar system test model for helicopter-borne flight test. This radar system consists of 4 LRUs(Line-Replacement Unit), which include antenna unit, transmitter and receiver unit, radar signal & data processing unit and display Unit. The developed core technologies include the planar array antenna, TWTA transmitter, coherent I/Q detector, digital pulse compression, MTI, DSP based Doppler FFT filter, adaptive CFAR, moving clutter compensation, platform motion stabilizer, and tracking capability. The design performance of the developed radar system is verified through various ground fixed and moving vehicle test as well as helicopter-borne field tests including MTD(Moving Target Detector) capability for the Doppler compensation due to the moving platform motion.

Autonomous Mobile Robot System Using Adaptive Spatial Coordinates Detection Scheme based on Stereo Camera (스테레오 카메라 기반의 적응적인 공간좌표 검출 기법을 이용한 자율 이동로봇 시스템)

  • Ko Jung-Hwan;Kim Sung-Il;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.26-35
    • /
    • 2006
  • In this paper, an automatic mobile robot system for a intelligent path planning using the detection scheme of the spatial coordinates based on stereo camera is proposed. In the proposed system, face area of a moving person is detected from a left image among the stereo image pairs by using the YCbCr color model and its center coordinates are computed by using the centroid method and then using these data, the stereo camera embedded on the mobile robot can be controlled for tracking the moving target in real-time. Moreover, using the disparity map obtained from the left and right images captured by the tracking-controlled stereo camera system and the perspective transformation between a 3-D scene and an image plane, depth information can be detected. Finally, based-on the analysis of these calculated coordinates, a mobile robot system is derived as a intelligent path planning and a estimation. From some experiments on robot driving with 240 frames of the stereo images, it is analyzed that error ratio between the calculated and measured values of the distance between the mobile robot and the objects, and relative distance between the other objects is found to be very low value of $2.19\%$ and $1.52\%$ on average, respectably.

Performance Analysis of Interference Cancellation Algorithms for an FM Based PCL System (FM 신호 기반 PCL 시스템에서 간섭 신호 제거 알고리즘의 성능 분석)

  • Park, Geun-Ho;Kim, Dong-Gyu;Kim, Ho Jae;Park, Jin-Oh;Lee, Won-Jin;Ko, Jae Heon;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.819-830
    • /
    • 2017
  • An FM radio based PCL system is a passive radar technique for detecting the multiple moving targets from FM radio signals and tracking the trajectories of the targets by calculating the cross-correlation function of direct-path signal and target echo signals. However, the interference signals are received from a surveillance channel, which is designed to receive the target echo signals. Because of this problem, the target echo signals are masked by the strong interference signals and this makes it difficult to detect the true targets from the cross-correlation function. Adaptive filters are known as effective methods for suppressing the interference signals but there is a problem to present their accurate performances in the PCL system because many literatures used the cross-correlation function and the ratio of input and output power as a measure of the performance analysis. In this paper, a performance analysis method is proposed to evaluate the performance of interference cancellation algorithms. By using the property that each component of the filter weight vector is adjusted to suppress the specific interference signal, a performance measure of the interference signal suppression is defined by a function of adaptive filter weights. Based on the proposed method, we compare the performance of the adaptive filters used in the PCL system. Simulation results show that the proposed method can be very effective for evaluating the performance of interference cancellation algorithms.

Improvement of Transfer Alignment Performance for Airborne EOTS (항공용 전자광학추적장비의 전달정렬 성능 개선)

  • Kim, Minsoo;Lee, Dogeun;Jeong, Chiun;Jeong, Jihee
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-67
    • /
    • 2022
  • An Electro-Optical Tracking System (EOTS) is an electric optical system with EO/IR cameras, laser sensors, and an IMU. The EOTS calculates coordinates of targets, using attitude and acceleration measured by the IMU. In particular for an armed aircraft, the performance of the weapon system depends on how quickly and accurately it acquires the target coordinates. The IMU should be operated after alignment is complete, to meet the coordinate accuracy required by the weapon system so the initial stabilization time of the IMU should be reduced, by quickly measuring the attitude and acceleration. Alignment is the process of determining the initial attitude by resolving the attitude error of the IMU, and the IMU of mission equipment such as an airborne EOTS, uses velocity matching based on the velocity from GPS/INS for aircraft navigation. In this paper, a method is presented to improve the transfer alignment performance of the airborne EOTS, by maneuvering aircraft and the mission equipment. First, the performance factor of the alignment was identified, as a heading error through the velocity matching model and simulation results. Then acceleration maneuvers and attitude changes were necessary, to correct the error. As a result of flight tests applied to an EOTS on a OOO aircraft system, the transfer alignment performance was improved as the duration time was decreased, by more than five times when the aircraft accelerated by more than 0.2g and the EOTS was moving until 6.7deg/s.

A Study on Automatic Correction Method of Electronic Compass Deviation Using the Geostationary Satellite Azimuth Information (정지위성 방위각 정보를 활용한 전자 컴퍼스 편차 자동보정기법 연구)

  • Lee, Jae-Won;Lee, Geon-Ho
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.189-194
    • /
    • 2017
  • The Moving Search Radar System (MSRS) monitors sea areas by moving along the coast. Since the radar is initially aligned to the front of the vehicle, it is important to know the changes in the heading azimuth of the vehicle to quickly acquire the target azimuth from the radar after the MSRS has moved. The heading azimuth can be obtained using the gyro compass, the GPS compass or the electronic compass. The electronic compass is suitable for MSRS requiring fast maneuverability due to its small volume, short stabilization time and low price. However, using a geomagnetic sensor may result in an error due to the surrounding magnetic field. Errors can make early automatic tracking of the satellites difficult and can reduce the radar detection accuracy. Therefore, this paper proposes a method to automatically compensate for the error reflecting the correction value on the radar obtained by comparing the reference azimuth calculated by solving the geodesic inverse problem using two coordinates between the radar and the geostationary satellite with the actually-directed azimuth angle of the satellite antenna. The feasibility and convenience of the proposed method were verified by applying it to the MSRS in the field.

Efficient Object Selection Algorithm by Detection of Human Activity (행동 탐지 기반의 효율적인 객체 선택 알고리듬)

  • Park, Wang-Bae;Seo, Yung-Ho;Doo, Kyoung-Soo;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.61-69
    • /
    • 2010
  • This paper presents an efficient object selection algorithm by analyzing and detecting of human activity. Generally, when people point any something, they will put a face on the target direction. Therefore, the direction of the face and fingers and was ordered to be connected to a straight line. At first, in order to detect the moving objects from the input frames, we extract the interesting objects in real time using background subtraction. And the judgment of movement is determined by Principal Component Analysis and a designated time period. When user is motionless, we estimate the user's indication by estimation in relation to vector from the head to the hand. Through experiments using the multiple views, we confirm that the proposed algorithm can estimate the movement and indication of user more efficiently.

A Study on Analysis of Phase Noise Effects in a FM-CW Radar System (FM-CW 레이다 시스템에서의 위상잡음 영향 분석에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1840-1846
    • /
    • 2011
  • It is necessary to estimate the Doppler spectrum for each range cell for the extraction of useful information from the return echoes in radar systems used for the remote sensing purpose such as detection of moving targets and weather surveillance. The signal amplitude in the beat frequency band is the important parameter in the detection and tracking of targets. However, strong clutter echoes do exist in most radar operation environments and the system phase noise spreads both the clutter and signal echoes of the target. In this paper, the effects of this system phase noise are analyzed concerning the clutter and the signal beat spectrum. It is shown that the separation capability of adjacent beat signal depends on the degree of spread in the clutter and beat signal caused by the radar system phase noise

Auto-Guiding System for McDonald Otto Struve Telescope

  • Kim, Eun-Bin;Park, Won-Kee;Kim, Jin-Young;Oh, Hee-Young;Choi, Chang-Su;Pak, Soo-Jong;Im, Myung-Shin;Kuehne, John
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.38.1-38.1
    • /
    • 2010
  • McDonald 2.1m Otto Struve Telescope is located in the Davis Mountains, 450 miles west of Austin, Texas. The telescope was built in 1938, but it is still in demand today. CQUEAN (Camera for QUasar in Early uNiverse) will be attached on this telescope and perform Y-band imaging observations. Dynamics study of the telescope shows that tracking errors are 0.1 arcsec/100sec in declination direction and 0.4 arcsec/100sec in R.A. direction. In order to allow a long exposure (> a few minutes) of a target field, we are making auto-guiding system for the 2.1m telescope. The auto-guiding system of CQUEAN will be connected with TCS of the telescope. The expected number of stars on the CCD field (2.97 square arcminutes) is about 1.2 stars which are brighter than magnitude 17.5 in 2.97 square arcminutes. For more effective observation, we plan to implement moving mechanism in guiding system so that guide CCD camera can see wider off-axis fields.

  • PDF

A design and implementation of Intelligent object recognition system in urban railway (도시철도내 지능형 객체인식 시스템 구성 및 설계)

  • Park, Ho-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.209-214
    • /
    • 2018
  • The subway, which is an urban railway, is the core of public transportation. Urban railways are always exposed to serious problems such as theft, crime and terrorism, as many passengers use them. Especially, due to the nature of urban railway environment, the scope of surveillance is widely dispersed and the range of surveillance target is rapidly increasing. Therefore, it is difficult to perform comprehensive management by passive surveillance like existing CCTV. In this paper, we propose the implementation, design method and object recognition algorithm for intelligent object recognition system in urban railway. The object recognition system that we propose is to analyze the camera images in the history and to recognize the situations where there are objects in the landing area and the waiting area that are not moving for more than a certain time. The proposed algorithm proved its effectiveness by showing detection rate of 100% for Selected area detection, 82% for detection in neglected object, and 94% for motionless object detection, compared with 84.62% object recognition rate using existing Kalman filter.

A Study on Accuracy Improvement for Range and Velocity Estimates in a FM-CW Radar (FM-CW 레이다에서의 거리 및 속도 추정 정확도 향상에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1752-1758
    • /
    • 2010
  • A FM-CW radar is used for the various purposes as a remote sensing device since it has the advantages of the relatively simple implementation and the low probability of signal interception. A FM-CW radar uses the same frequency modulated continuous wave for both transmission and demodulation. Therefore, the received beat frequency represents the range and Doppler information of targets. However, using the conventional FFT method, the degree of accuracy and resolution in the spectrum estimation can be seriously degraded in the detection and tracking of fast moving targets because of the short dwell time. Therefore, in this paper, the model parameter estimation methods called as an autoregressive method is applied to overcome these problems and showed that the improved accuracy and resolution can be obtained for the target range and velocity estimation.