• Title/Summary/Keyword: Moving mesh method

Search Result 152, Processing Time 0.032 seconds

Numerical investigation of swash-swash interaction driven by double dam-break using OpenFOAM (OpenFOAM을 활용한 포말대 이중 댐-붕괴 수치모형실험)

  • Ok, Juhee;Kim, Yeulwoo;Marie-Pierre C. Delislec
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.603-617
    • /
    • 2023
  • This study aims to provide a better understanding of the turbulent flow characteristics in swash zone. A double dam-break method is employed to generate the swash zone flow. Comparing with the conventional single dam-break method, a delay between two gate opening can be controlled to reproduce various interactions between uprush and backwash. For numerical simulations, overInterDyMFoam based on OpenFOAM is adopted. Using overInterDyMFoam, interface between two immiscible fluids having different densities (i.e., air and water phases) can be tracked in a moving mesh with multiple layers. Two-dimensional Reynolds-Averaged Navier-Stokes equations are solved with a standard 𝜅-𝜖 turbulence model for momentum and continuity. Numerical model results are validated with laboratory experiment data for the time series of water depth and streamwise velocity. Turbulent kinetic energy distribution is further investigated to identify the turbulence evolution for each flow regime (i.e., uprush, backwash, and swash-swash interaction).

A Study of Parallel Implementations of the Chimera Method using Unsteady Euler Equations (비정상 Euler 방정식을 이용한 Chimera 기법의 병렬처리에 관한 연구)

  • Cho K. W.;Kwon J. H.;Lee S.S
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.52-62
    • /
    • 1999
  • The development of a parallelized aerodynamic simulation process involving moving bodies is presented. The implementation of this process is demonstrated using a fully systemized Chimera methodology for steady and unsteady problems. This methodology consists of a Chimera hole-cutting, a new cut-paste algorithm for optimal mesh interface generation and a two-step search method for donor cell identification. It is fully automated and requires minimal user input. All procedures of the Chimera technique are parallelized on the Cray T3E using the MPI library. Two and three-dimensional examples are chosen to demonstrate the effectiveness and parallel performance of this procedure.

  • PDF

ANALYSIS OF FLOW AROUND SHIP USING UNSTRUCTURED GRID (비정렬 격자를 이용한 선체 주위의 유동 해석)

  • Jun, Jae-Hyoung;Lee, Sang-Eui;Kwon, Jae-Woong;Son, Jae-Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.187-193
    • /
    • 2011
  • In this report, We compared the actual test with the result of pow calculation and Resistance/Self-propulsion of the ship using STAR-CCM+ which is the commercial Reynolds Averaged Navier-Strokes(RANs) Solver. The calculation model was the KRISO Container Ship and 205K Bulk Carrier of Sungdong shipbuilding company. For this calculation, We used Realizable K-Epsilon model for flaw analysis, VOF method for the free surface creation, Moving Reference Frame method for reducing the POW calculation time, and Sliding Mesh method for Self-Propulsion analysis. Calculation of Resistance and Self-Propulsion includes the free-surface. And all calculations in this report were based on unstructured grids.

  • PDF

Efficient Path Finding in 3D Games by Using Visibility Tests (가시성 검사를 이용한 3차원 게임에서의 효율적인 경로 탐색)

  • Kim, Hyung-Il;Jung, Dong-Min;Um, Ky-Hyun;Cho, Hyung-Je;Kim, Jun-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.11
    • /
    • pp.1483-1495
    • /
    • 2006
  • The navigation mesh represents a terrain as a set of triangles on which characters may move around. The navigation mesh cab be generated automatically, and it is more flexible in representing 3D surface. The number of triangles to represent a terrain may vary according to the structure of the terrain. As characters are moving around on a navigation mesh, the path planning can be performed more easily by projecting the 3D surfaces into 2D space. However, when the terrain is represented with an elaborated mesh of large number of triangles to achieve more realistic movements, the path finding can be very inefficient because there are too many states(triangles) to be searched. In this paper, we propose an efficient method of path finding in 3D games where the terrain is represented by navigation meshes. Our method uses the visibility tests. When the graph-based search is applied to elaborated polygonal meshes for detailed terrain representation, the path finding can be very inefficient because there are too many states(polygons) to be searched. In our method, we reduce the search space by using visibility tests so that the search can be fast even on the detailed terrain with large number of polygons. First we find the visible vertices of the obstacles, and define the heuristic function as the distance to the goal through those vertices. By doing that, the number of states that the graph-based search visits can be substantially reduced compared to the plane search with straight-line distance heuristic.

  • PDF

Dynamic Algorithm for Solid Problems using MLS Difference Method (MLS 차분법을 이용한 고체역학 문제의 동적해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.139-148
    • /
    • 2012
  • The MLS(Moving Least Squares) Difference Method is a numerical scheme that combines the MLS method of Meshfree method and Taylor expansion involving not numerical quadrature or mesh structure but only nodes. This paper presents an dynamic algorithm of MLS difference method for solving transient solid mechanics problems. The developed algorithm performs time integration by using Newmark method and directly discretizes strong forms. It is very convenient to increase the order of Taylor polynomial because derivative approximations are obtained by the Taylor series expanded by MLS method without real differentiation. The accuracy and efficiency of the dynamic algorithm are verified through numerical experiments. Numerical results converge very well to the closed-form solutions and show less oscillation and periodic error than FEM(Finite Element Method).

Numerical analysis of the vortex induced vibration of the 2-D cylinder using dynamic deforming mesh (동적격자변형기법을 이용한 2차원 실린더의 와류유발진동에 대한 수치해석)

  • Lee, Namhun;Baek, Jiyoung;Lee, Seungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • In this paper, numerical simulations are performed on the lock-in phenomena of vortex induced vibration(VIV) of a two dimensional cylinder. A deforming grid as well as a rigidly moving grid are used to simulate the movement of the cylinder. The grid deformation is accomplished by the linear spring analogy. Converged solutions, which are obtained by controling the grid size and the non-dimensional time step, are used for comparison and validation of the analysis results. Moreover, the efficiency and the accuracy of the coupling methods for fluid-structure interaction are examined.

Antenna Selection and Power Control Method for Uniform Circular Array Antennas Beamforming (원형 배열 안테나 빔 형성을 위한 안테나 선택 및 제어 방법)

  • Park, Seongho;Park, Chul;Kim, Hanna;Chung, Jaehak
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.68-76
    • /
    • 2015
  • This paper proposes the antenna selection scheme and power control algorithms of multiple nodes beamforming when the vehicles equipped with circular array antennas is moving and construct mobile mesh networks. The proposed antenna selection scheme chooses beamforming antenna elements considering antenna radiation gain and allows duplicated antenna selection for multiple adjacent nodes. The proposed power control algorithms maximize SIR for the duplicated antenna selection. The simulation demonstrates that the proposed antenna selection and power control achieve 2.5dB higher SIR gain than that of conventional methods when two nodes are apart from $15^{\circ}$.

The Evaluation of On-line Observer System of Linear Induction Motor Using a Transient FEM & Experiment for Sensorless Vector Control (센서리스 벡터 제어를 위한 과도 FEM & 실험을 이용한 선형 유도 전동기의 On-line 관측기시스템의 설계)

  • Jun, Myung-Jin;Lee, Byeong-Du;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1099-1100
    • /
    • 2011
  • This study deals with the dynamic characteristics analysis of Linear Induction Motor (LIM) using finite element method in which the moving mesh technique is considered. The focus of this paper is to show the appropriate of on-line observer system for position sensorless control of a LIM under the phase asymmetry, saturation and iron loss. Comparisons are given with angle of the observer and that of proposed FEA method of linear induction motor, respectively. The position sensorless control system is realized, and the effective of the observer system is verified by experimental results.

  • PDF

Flow Analysis of Gas Circuit Breakers for Developing the Small Current Interruption Performance (가스차단기의 소전류 차단성능 향상을 위한 유동해석)

  • Lee, Jong-Chul;Choi, Jong-Ung;Kang, Sung-Mo;Kim, Youn-Jea
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1961-1965
    • /
    • 2003
  • The flow analysis is needed to verify the physical phenomena through interruption processes for improving the capacity and the reliability of gas circuit breakers. Moreover the small current interruption performance of GCBs could be predicted by coupling the flow characteristics with the electric field one. In this paper, the unsteady flow characteristics and the traveling trajectory are depicted with a commercial CFD code, PHOENICS, programmed for moving motion of objects. In order to validate computational results, the measured pressure data in cylinder and in front of arcing contact are compared with the test results of small current interruption.

  • PDF

A Study of Parallel Implementations of the Chimera Method (Chimera 기법의 병렬처리에 관한 연구)

  • Cho K. W.;Kwon J. H.;Lee S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.35-47
    • /
    • 1999
  • The development of a parallelized aerodynamic simulation process involving moving bodies is presented. The implementation of this process is demonstrated using a fully systemized Chimera methodology for steady and unsteady problems. This methodology consist of a Chimera hole-cutting, a new cut-paste algorithm for optimal mesh. interface generation and a two-step search method for donor cell identification. It is fully automated and requires minimal user input. All procedures of the Chimera technique are parallelized on the Cray T3E using the MPI library. Two and three-dimensional examples are chosen to demonstate the effectiveness and parallel performance of this procedure.

  • PDF