• Title/Summary/Keyword: Moving mass

Search Result 513, Processing Time 0.02 seconds

CIRCULATION AND WATER MASSES IN THE CONTINE NTAL SHELF BREAK REGION OF THE EAST CHINA SEA (동지나해 대륙붕 연변의 해수 유동과 수괴)

  • Lim Gi Bong;Fujimoto Minoru
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1972
  • Studies on the circulation and water masses in the continental shelf break region of the East China Sea are Summerized as follows : 1. The main stream of the Kuroshio flowing north-east near $29^{\circ}N\;Lat\;127^{\circ}E$ tong of the East China Sea in summer is narrow in width. Moving toward east, it becomes twice as wide in Tokora Strait, Japan. 2. In the main stream area of the Kuroshio, the surface Waters in the Upper layer (0-250m) are influenced by the coastal waters of China, and the counter current submerges under the surface water. Therefore, the mixing waters are found in its intermediate layer. 3. Water mass between Amami Island and the continental shelf of the East China Sea consists of main stream water, counter current water, gyration water and mixed water with coastal waters. 4. The maximum velocity of current in this waters was 139cm/sec. The volume transport was estimated approximately as $24.2\;\times\;10^6m^3/sec$. It was less than $33\;\times\;10^6m^3/sec$ in the region between Okinawa and continental shelf of the East China Sea. 5. Surface waters east of $29^{\circ}N\;Lat\;128^{\circ}E$ Long flows toward Amami Island, Okinawa Island, and Hachi Ju San Island, while those west of the region flow toward the Korea-strait, Cheju Island, coastal waters of Kyusyu, and the Pacific Ocean through Tokora Strait. The velocity of the current was estimated approximately as $0.3\~0.5$ miles per hour. 6. The bottom waters in the continental shelf break region flow toward the Korea Strait, Cheju Island and the coastal water of Kyusyu, while that of the continental shelf flows toward the Yellow Sea, 7, The characteristics of the Kuroshio water is changed remarkably by the mixing with the coastal water of China.

  • PDF

A Study on the Digital Restoration Policy Implementation Process of Donuimun Gate (돈의문의 디지털 복원 정책집행 과정에 관한 연구)

  • CHOE Yoosun
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.246-262
    • /
    • 2023
  • This study analyzed policy implementation factors focusing on how Donuimun, a demolished cultural heritage, was digitally restored and the policy implementation process of Donuimun Gate restoration. Through this, the characteristics of the implementation process of the digital Donuimun Gate restoration policy promoted by public-private multilateral collaboration were examined and implications were sought for how institutions with different interests solved problems and collaborated in the implementation process. The research method was focused on policy implementation factors including policy executive factors, policy content factors, policy resource factors, and policy environment factors, and the process was analyzed for each detailed component. Along with literature analysis, in-depth interviews were conducted with participants in policy implementation. As a result of the study, first, it was found in the policy executive factor that the quick decision-making leadership of the policy manager and the flexible attitude of the person in charge of the government agency had a positive effect on preventing conflicts between different interest groups. Second, in terms of policy content, establishing a common goal that everyone can accept and moving forward consistently gave trust and created synergy. Third, in the policy implementation resource factor, the importance of the budget was emphasized. Finally, as an environmental factor for policy implementation, the opening of 5G mobile communication for the first time along with the emergence of the Fourth Industrial Revolution at the time of policy implementation acted as a timely factor. The digital Donuimun Gate was the first case of restoring a lost cultural heritage with AR and VR, and received attention and support from the mass media and the public. This also shows that digital restoration can be a model case that can be a solution without conflicts with local residents where cultural heritages are located or conflicts between stakeholders in the preservation and restoration of real objects.

Hydrographic Structure Along $131.5^{\circ}W$ in the Northeastern Pacific in July-August 2005 (2005년 7-8월에 관측한 북동태평양 $131.5^{\circ}W$의 해수특성 및 해양구조)

  • Shin, Hong-Ryeol;Hwang, Sang-Chul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.190-199
    • /
    • 2008
  • To investigate hydrographic structure and characteristics of the tropical ocean in the eastern and the western Pacific, CTD(Conductivity-Temperature-Depth) data along $131^{\circ}W$ and $137^{\circ}-142^{\circ}E$ in July-August 2005 were analyzed. Sea surface temperature along $131.5^{\circ}W$ in summer is highest in the Equatorial Counter Current(ECC) because of the high-temperature water greater than $28^{\circ}C$ moving through the ECC from the western Pacific to the eastern Pacific in spring and summer. Based on the evidence of the presence of low salinity and high dissolved oxygen water in the North Equatorial Current(NEC), we suggested that the low salinity water moved from the Gulf of Panama to the east of Philippine along the North Equatorial Current(NEC). The South Equatorial Current(SEC) had the most saline water from surface to deep layer because the saline water from the Subtropical South Pacific Ocean moved to the north. The salinity minimum layer was observed at 500-1500 m depth along $131.5^{\circ}W$. The water mass with the salinity minimum layer in the north of $5^{\circ}N$ came from the North Pacific Intermediate Water(NPIW) and that in the south of $5^{\circ}N$ came from the Antarctic Intermediate Water(AAIW), which was more saline than the NPIW. Cyclonic cold eddy with a diameter of about 200km was found in $4-6^{\circ}N$. Sea surface temperature along $131.5^{\circ}W$ in the eastern Pacific was lower than along $137^{\circ}-142^{\circ}E$ in the western Pacific; on the other hand, sea surface salinity in the eastern Pacific was higher than in the western Pacific. Subsurface saline water from the Subtropical South Pacific Ocean was less saline in the eastern Pacific than in the western Pacific. Salinity and density(${\sigma}_{\theta}$) of the salinity minimum layer south of $14^{\circ}N$ was higher in the eastern Pacific than in the western Pacific.