• Title/Summary/Keyword: Moving coordinate

Search Result 207, Processing Time 0.027 seconds

The Cross-sectional Mass Flux Observation at Yeomha Channel, Gyeonggi Bay at Spring Tide During Dry and Flood Season (단면 관측을 통한 경기만 염하수로의 대조기 평수시와 홍수시 유출입량 변화특성 조사)

  • Lee, Dong-Hwan;Yoon, Byung-Il;Kim, Jong-Wook;Gu, Bon-Ho;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-25
    • /
    • 2012
  • To calculate the total mass flux that change in dry and flood season in the Yeomha Channel of Gyeonggi Bay, the 13 hour bottom tracking observation was performed from the southern extremity. The value of the total mass flux(Lagrange flux) was calculated as the sum of the Eulerian flux value and stroke drift value and the tidal residual flow was harmonically analyzed through the least-squares method. Moreover, the average during the tidal cycle is essential to calculate the mass flux and the tidal residual flow and there is the need to equate the grid of repeatedly observed data. Nevertheless, due to the great differences in the studied region, the number of vertical grid tends to change according to time and since the horizontal grid differs according to the transport speed of the ship as a characteristic of the bottom tracking observation, differences occur in the horizontal and vertical grid for each hour. Hence, the present study has vertically and horizontally normalized(sigma coordinate) to equate the grid per each hour. When compared to the z-level coordinate system, the Sigma coordinate system was evaluated to have no irrationalities in data analysis with 5% of error. As a result of the analysis, the tidal residual flow displayed the flow pattern of sagging in the both ends in the main waterway direction of dry season. During flood season, it was confirmed that the tidal residual flow was vertical 2-layer flow. As a result of the total mass flux, the ebb properties of 359 cm/s and 261 cm/s were observed during dry and flood season, respectively. The total mass flux was moving the intertidal region between Youngjong-do and Ganghwa-do.

Implementation of a Self Controlled Mobile Robot with Intelligence to Recognize Obstacles (장애물 인식 지능을 갖춘 자율 이동로봇의 구현)

  • 류한성;최중경
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.312-321
    • /
    • 2003
  • In this paper, we implement robot which are ability to recognize obstacles and moving automatically to destination. we present two results in this paper; hardware implementation of image processing board and software implementation of visual feedback algorithm for a self-controlled robot. In the first part, the mobile robot depends on commands from a control board which is doing image processing part. We have studied the self controlled mobile robot system equipped with a CCD camera for a long time. This robot system consists of a image processing board implemented with DSPs, a stepping motor, a CCD camera. We will propose an algorithm in which commands are delivered for the robot to move in the planned path. The distance that the robot is supposed to move is calculated on the basis of the absolute coordinate and the coordinate of the target spot. And the image signal acquired by the CCD camera mounted on the robot is captured at every sampling time in order for the robot to automatically avoid the obstacle and finally to reach the destination. The image processing board consists of DSP (TMS320VC33), ADV611, SAA7111, ADV7l76A, CPLD(EPM7256ATC144), and SRAM memories. In the second part, the visual feedback control has two types of vision algorithms: obstacle avoidance and path planning. The first algorithm is cell, part of the image divided by blob analysis. We will do image preprocessing to improve the input image. This image preprocessing consists of filtering, edge detection, NOR converting, and threshold-ing. This major image processing includes labeling, segmentation, and pixel density calculation. In the second algorithm, after an image frame went through preprocessing (edge detection, converting, thresholding), the histogram is measured vertically (the y-axis direction). Then, the binary histogram of the image shows waveforms with only black and white variations. Here we use the fact that since obstacles appear as sectional diagrams as if they were walls, there is no variation in the histogram. The intensities of the line histogram are measured as vertically at intervals of 20 pixels. So, we can find uniform and nonuniform regions of the waveforms and define the period of uniform waveforms as an obstacle region. We can see that the algorithm is very useful for the robot to move avoiding obstacles.

Tracing the Drift Ice Using the Particle Tracking Method in the Arctic Ocean (북극해에서 입자추적 방법을 이용한 유빙 추적 연구)

  • Park, GwangSeob;Kim, Hyun-Cheol;Lee, Taehee;Son, Young Baek
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1299-1310
    • /
    • 2018
  • In this study, we analyzed distribution and movement trends using in-situ observations and particle tracking methods to understand the movement of the drift ice in the Arctic Ocean. The in-situ movement data of the drift ice in the Arctic Ocean used ITP (Ice-Tethered Profiler) provided by NOAA (National Oceanic and Atmospheric Administration) from 2009 to 2018, which was analyzed with the location and speed for each year. Particle tracking simulates the movement of the drift ice using daily current and wind data provided by HYCOM (Hybrid Coordinate Ocean Model) and ECMWF (European Centre for Medium-Range Weather Forecasts, 2009-2017). In order to simulate the movement of the drift ice throughout the Arctic Ocean, ITP data, a field observation data, were used as input to calculate the relationship between the current and wind and follow up the Lagrangian particle tracking. Particle tracking simulations were conducted with two experiments taking into account the effects of current and the combined effects of current and wind, most of which were reproduced in the same way as in-situ observations, given the effects of currents and winds. The movement of the drift ice in the Arctic Ocean was reproduced using a wind-imposed equation, which analyzed the movement of the drift ice in a particular year. In 2010, the Arctic Ocean Index (AOI) was a negative year, with particles clearly moving along the Beaufort Gyre, resulting in relatively large movements in Beaufort Sea. On the other hand, in 2017 AOI was a positive year, with most particles not affected by Gyre, resulting in relatively low speed and distance. Around the pole, the speed of the drift ice is lower in 2017 than 2010. From seasonal characteristics in 2010 and 2017, the movement of the drift ice increase in winter 2010 (0.22 m/s) and decrease to spring 2010 (0.16 m/s). In the case of 2017, the movement is increased in summer (0.22 m/s) and decreased to spring time (0.13 m/s). As a result, the particle tracking method will be appropriate to understand long-term drift ice movement trends by linking them with satellite data in place of limited field observations.

Migration of the Dokdo Cold Eddy in the East Sea (동해 독도 냉수성 소용돌이의 이동 특성)

  • KIM, JAEMIN;CHOI, BYOUNG-JU;LEE, SANG-HO;BYUN, DO-SEONG;KANG, BOONSOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.351-373
    • /
    • 2019
  • The cold eddies around the Ulleung Basin in the East Sea were identified from satellite altimeter sea level data using the Winding-Angle method from 1993 to 2015. Among the cold eddies, the Dokdo Cold Eddies (DCEs), which were formed at the first meandering trough of the East Korea Warm Current (EKWC) and were pinched off to the southwest from the eastward flow, were classified and their migration patterns were analyzed. The vertical structures of water temperature, salinity, and flow velocity near the DCE center were also examined using numerical simulation and observation data provided by the Hybrid Coordinate Ocean Model and the National Institute of Fisheries Science, respectively. A total of 112 DCEs were generated for 23 years. Of these, 39 DCEs migrated westward and arrived off the east coast of Korea. The average travel distance was 250.9 km, the average lifespan was 93 days, and the average travel speed was 3.5 cm/s. The other 73 DCEs had moved to the east or had hovered around the generated location until they disappeared. At 50-100 m depth under the DCE, water temperature and salinity (T < $5^{\circ}C$, S < 34.1) were lower than those of ambient water and isotherms made a dome shape. Current faster than 10 cm/s circulates counterclockwise from the surface to 300 m depth at 38 km away from the center of DCE. After the EKWC separates from the coast, it flows eastward and starts to meander near Ulleungdo. The first trough of the meander in the east of Ulleungdo is pushed deep into the southwest and forms a cold eddy (DCE), which is shed from the meander in the south of Ulleungdo. While a DCE moves westward, it circumvents the Ulleung Warm Eddy (UWE) clockwise and follows U shape path toward the east coast of Korea. When the DCE arrives near the coast, the EKWC separates from the coast at the south of DCE and circumvents the DCE. As the DCE near the coast weakens and extinguishes about 30 days later after the arrival, the EKWC flows northward along the coast recovering its original path. The DCE steadily transports heat and salt from the north to the south, which helps to form a cold water region in the southwest of the Ulleung Basin and brings positive vorticity to change the separation latitude and path of the EKWC. Some of the DCEs moving to the west were merged into a coastal cold eddy to form a wide cold water region in the west of Ulleung Basin and to create a elongated anticlockwise circulation, which separated the UWE in the north from the EKWC in the south.

A Study on Utilization of GNSS and Spatial Image for River Site Decision Supporting (하천 현장업무 의사지원을 위한 GNSS와 공간영상 활용방안에 관한 연구)

  • Park, Hyeon-Cheol;Choung, Yun-Jae;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.118-129
    • /
    • 2011
  • This Study has developed the information system of the rivers based on 3D image GIS by converging the latest information technology of GIS(Geographic Information System), RS(Remote Sensing), GNSS(Global Navigation Satellite System), aerial laser survey(LiDAR) with real time network technology in order to understand the current situation of all the four major rivers and support the administrative management system. The said information system acquires the high resolution aerial photographs of 25cm, aerial laser survey and water depth surveying data to express precise space information on the whole Youngsan River which is the leading project site out of the four river sites. Monitoring the site is made available on the transporting means such as a helicopter, boat or a bus in connection with locational coordinate tracking skill for the moving objects in real time using GNSS. It makes monitoring all the information on the four river job sites available at a glance, which can obtain the reliability of the people to such vast areas along with enhancing the recognition of the people by publicity of four Rivers Revitalizing Project and reports thereof.

A New Height Estimation Scheme Using Geometric Information of Stereo Camera based on Pan/tilt control (팬/틸트 제어기반의 스데레오 카메라의 기하학적 정보를 이용한 새로운 높이 추정기법)

  • Ko Jung-Hwan;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.156-165
    • /
    • 2006
  • In this paper, a new intelligent moving target tracking and surveillance system basing on the pan/tilt-embedded stereo camera system is suggested and implemented. In the proposed system, once the face area of a target is detected from the input stereo image by using a YCbCr color model and phase-type correlation scheme and then, using this data as well as the geometric information of the tracking system, the distance and 3D information of the target are effectively extracted in real-time. Basing on these extracted data the pan/tilted-imbedded stereo camera system is adaptively controlled and as a result, the proposed system can track the target adaptively under the various circumstance of the target. From some experiments using 480 frames of the test input stereo image, it is analyzed that a standard variation between the measured and computed the estimated target's height and an error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 1.03 and 1.18$\%$ on average, respectively. From these good experimental results a possibility of implementing a new real-time intelligent stereo target tracking and surveillance system using the proposed scheme is finally suggested.

Tiny Pores Observed by New Solar Telescope and Hinode

  • Cho, Kyung-Suk;Bong, Su-Chan;Chae, Jong-Chul;Kim, Yeon-Han;Park, Young-Deuk;Ahn, K.;Katsukawa, Y.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • Our previous study on tiny pores (R < 2") observed by HINODE/Solar Optical Telescope (SOT) revealed that the plasma in the pores at the photosphere is always moving down and the pores are surrounded by the strong downward motions (highly red-shifted) of neighboring granulations. From this study, we speculated that the flow motions above the pore should be related with the motions at the photosphere, since the pore is strong magnetic field region. Meanwhile, SNU and KASI installed Fast Imaging Solar Spectrograph (FISS) in the Cude room of the 1.6 m New Solar Telescope (NST) at Big Bear Solar Observatory. FISS is a unique system that can do imaging of H-alpha and Ca II 8542 band simultaneously, which is quite suitable for studying of dynamics of chromosphere. To get some clue on the relationship between the photospheric and low-chromospheric motions at the pore region, we took a coordinate observation with NST/FISS and Hinode/SOT for new emerging active region (AR11117) on October 26, 2010. In the observed region, we could find two tiny pores and two small magnetic islands (SMIs), which have similar magnetic flux with the pores but does not look dark. Magnetic flux density and Doppler velocities at the photosphere are estimated by applying the center-of-gravity (COG) method to the HINODE/spectropolarimeter (SP) data. The line-of-sight motions above the photosphere are determined by adopting the bisector method to the wing spectra of Ha and CaII 8542 lines. As results, we found the followings. (1) There are upflow motion on the pores and downflow motion on the SMIs. (2) Towards the CaII 8542 line center, upflow motion decrease and turn to downward motion in pores, while the speed of down flow motion increases in the SMIs. (3) There is oscillating motion above pores and the SMIs, and this motion keep its pattern along the height. (4) As height increase, there is a general tendency of the speed shift to downward on pores and the SMIs. This is more clearly seen on the other regions of stronger magnetic field. In this talk, we will present preliminary understanding of the coupling of pore dynamics between the photosphere and the low-chromosphere.

  • PDF

A Prediction Search Algorithm by using Temporal and Spatial Motion Information from the Previous Frame (이전 프레임의 시공간 모션 정보에 의한 예측 탐색 알고리즘)

  • Kwak, Sung-Keun;Wee, Young-Cheul;Kimn, Ha-Jine
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.3
    • /
    • pp.23-29
    • /
    • 2003
  • There is the temporal correlation of the video sequence between the motion vector of current block and the motion vector of the previous block. If we can obtain useful and enough information from the motion vector of the same coordinate block of the previous frame, the total number of search points used to find the motion vector of the current block may be reduced significantly. In this paper, we propose the block-matching motion estimation using an adaptive initial search point by the predicted motion information from the same block of the previous frame. And the first search point of the proposed algorithm is moved an initial point on the location of being possibility and the searching process after moving the first search point is processed according to the fast search pattern. Simulation results show that PSNR(Peak-to-Signal Noise Ratio) values are improved UP to the 1.05dB as depend on the image sequences and improved about 0.33~0.37dB on an average. Search times are reduced about 29~97% than the other fast search algorithms. Simulation results also show that the performance of the proposed scheme gives better subjective picture quality than the other fast search algorithms and is closer to that of the FS(Full Search) algorithm.

  • PDF

A Scheme of Data-driven Procurement and Inventory Management through Synchronizing Production Planning in Aircraft Manufacturing Industry (항공기 제조업에서 생산계획 동기화를 통한 데이터기반 구매조달 및 재고관리 방안 연구)

  • Yu, Kyoung Yul;Choi, Hong Suk;Jeong, Dae Yul
    • The Journal of Information Systems
    • /
    • v.30 no.1
    • /
    • pp.151-177
    • /
    • 2021
  • Purpose This paper aims to improve management performance by effectively responding to production needs and reducing inventory through synchronizing production planning and procurement in the aviation industry. In this study, the differences in production planning and execution were first analyzed in terms of demand, supply, inventory, and process using the big data collected from a domestic aircraft manufacturers. This paper analyzed the problems in procurement and inventory management using legacy big data from ERP system in the company. Based on the analysis, we performed a simulation to derive an efficient procurement and inventory management plan. Through analysis and simulation of operational data, we were able to discover procurement and inventory policies to effectively respond to production needs. Design/methodology/approach This is an empirical study to analyze the cause of decrease in inventory turnover and increase in inventory cost due to dis-synchronize between production requirements and procurement. The actual operation data, a total of 21,306,611 transaction data which are 18 months data from January 2019 to June 2020, were extracted from the ERP system. All them are such as basic information on materials, material consumption and movement history, inventory/receipt/shipment status, and production orders. To perform data analysis, it went through three steps. At first, we identified the current states and problems of production process to grasp the situation of what happened, and secondly, analyzed the data to identify expected problems through cross-link analysis between transactions, and finally, defined what to do. Many analysis techniques such as correlation analysis, moving average analysis, and linear regression analysis were applied to predict the status of inventory. A simulation was performed to analyze the appropriate inventory level according to the control of fluctuations in the production planing. In the simulation, we tested four alternatives how to coordinate the synchronization between the procurement plan and the production plan. All the alternatives give us more plausible results than actual operation in the past. Findings Based on the big data extracted from the ERP system, the relationship between the level of delivery and the distribution of fluctuations was analyzed in terms of demand, supply, inventory, and process. As a result of analyzing the inventory turnover rate, the root cause of the inventory increase were identified. In addition, based on the data on delivery and receipt performance, it was possible to accurately analyze how much gap occurs between supply and demand, and to figure out how much this affects the inventory level. Moreover, we were able to obtain the more predictable and insightful results through simulation that organizational performance such as inventory cost and lead time can be improved by synchronizing the production planning and purchase procurement with supply and demand information. The results of big data analysis and simulation gave us more insights in production planning, procurement, and inventory management for smart manufacturing and performance improvement.

Improvement of Transfer Alignment Performance for Airborne EOTS (항공용 전자광학추적장비의 전달정렬 성능 개선)

  • Kim, Minsoo;Lee, Dogeun;Jeong, Chiun;Jeong, Jihee
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.60-67
    • /
    • 2022
  • An Electro-Optical Tracking System (EOTS) is an electric optical system with EO/IR cameras, laser sensors, and an IMU. The EOTS calculates coordinates of targets, using attitude and acceleration measured by the IMU. In particular for an armed aircraft, the performance of the weapon system depends on how quickly and accurately it acquires the target coordinates. The IMU should be operated after alignment is complete, to meet the coordinate accuracy required by the weapon system so the initial stabilization time of the IMU should be reduced, by quickly measuring the attitude and acceleration. Alignment is the process of determining the initial attitude by resolving the attitude error of the IMU, and the IMU of mission equipment such as an airborne EOTS, uses velocity matching based on the velocity from GPS/INS for aircraft navigation. In this paper, a method is presented to improve the transfer alignment performance of the airborne EOTS, by maneuvering aircraft and the mission equipment. First, the performance factor of the alignment was identified, as a heading error through the velocity matching model and simulation results. Then acceleration maneuvers and attitude changes were necessary, to correct the error. As a result of flight tests applied to an EOTS on a OOO aircraft system, the transfer alignment performance was improved as the duration time was decreased, by more than five times when the aircraft accelerated by more than 0.2g and the EOTS was moving until 6.7deg/s.