• Title/Summary/Keyword: Moving color

Search Result 342, Processing Time 0.031 seconds

A Shadow Region Suppression Method using Intensity Projection and Converting Energy to Improve the Performance of Probabilistic Background Subtraction (확률기반 배경제거 기법의 향상을 위한 밝기 사영 및 변환에너지 기반 그림자 영역 제거 방법)

  • Hwang, Soon-Min;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.69-76
    • /
    • 2010
  • The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.

Multiple Object Tracking using Color Invariants (색상 불변값을 이용한 물체 괘적 추적)

  • Choo, Moon Won;Choi, Young Mie;Hong, Ki-Cheon
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.101-109
    • /
    • 2002
  • In this paper, multiple object tracking system in a known environment is proposed. It extracts moving areas shaped on objects in video sequences and detects racks of moving objects. Color invariant co-occurrence matrices are exploited to extract the plausible object blocks and the correspondences between adjacent video frames. The measures of class separability derived from the features of co-occurrence matrices are used to improve the performance of tracking. The experimented results are presented.

  • PDF

A Two-Stage Approach to Pedestrian Detection with a Moving Camera

  • Kim, Miae;Kim, Chang-Su
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.4
    • /
    • pp.189-196
    • /
    • 2013
  • This paper presents a two-stage approach to detect pedestrians in video sequences taken from a moving vehicle. The first stage is a preprocessing step, in which potential pedestrians are hypothesized. During the preprocessing step, a difference image is constructed using a global motion estimation, vertical and horizontal edge maps are extracted, and the color difference between the road and pedestrians are determined to create candidate regions where pedestrians may be present. The candidate regions are refined further using the vertical edge symmetry features of the pedestrians' legs. In the next stage, each hypothesis is verified using the integral channel features and an AdaBoost classifier. In this stage, a decision is made as to whether or not each candidate region contains a pedestrian. The proposed algorithm was tested on a range of dataset images and showed good performance.

  • PDF

Object Tracking in Video Sequences using Local Block Features (지역적 영역 컬러 특징 정보를 이용한 이동물체 추적)

  • Moon Won, Choo;Seongah, Chin
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.200-205
    • /
    • 2002
  • In this paper, we propose an object tracking system which extracts moving areas+ shaped on objects in video sequences and decides tracks of moving objects. Color invariances are exploited to extract the plausible object blocks and the degree of radial homogeneity is utilized as local block feature to find out the block correspondences.

  • PDF

Forest Fire Detection and Identification Using Image Processing and SVM

  • Mahmoud, Mubarak Adam Ishag;Ren, Honge
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.159-168
    • /
    • 2019
  • Accurate forest fires detection algorithms remain a challenging issue, because, some of the objects have the same features with fire, which may result in high false alarms rate. This paper presents a new video-based, image processing forest fires detection method, which consists of four stages. First, a background-subtraction algorithm is applied to detect moving regions. Secondly, candidate fire regions are determined using CIE $L{\ast}a{\ast}b{\ast}$ color space. Thirdly, special wavelet analysis is used to differentiate between actual fire and fire-like objects, because candidate regions may contain moving fire-like objects. Finally, support vector machine is used to classify the region of interest to either real fire or non-fire. The final experimental results verify that the proposed method effectively identifies the forest fires.

The Position Tracking Algorithm of Moving Viewer's Two-Eyes (움직이는 관찰자의 두 눈 위치 검출 알고리즘)

  • Huh, Kyung-Moo;Park, Young-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.544-550
    • /
    • 2000
  • Among the several types of 3D display methods the autostereoscopic method has an advantage that we can enjoy a 3D image without any additional device but the method has a disadvantage of a narrow viewing zone so that the moving viewer coannot see the 3D image continuously. This disadvantage can be overcome with the detectioni of viewer's positional movement by head tracking. In this paper we suggest a method of detecting the position of the moving viewer's two eyes by using images obtained through a color CCD camera, The suggested method consists of the preprocessing process and the eye-detection process. Through the experiment of applying the suggested method we were able to find the accurate two-eyes position for 78 images among 80 sample input images of 8 different men with the processing speed of 0.39 second/frame using a personal computer.

  • PDF

Adaptive Color Snake Model for Real-Time Object Tracking

  • Seo, Kap-Ho;Jang, Byung-Gi;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.740-745
    • /
    • 2003
  • Motion tracking and object segmentation are the most fundamental and critical problems in vision tasks suck as motion analysis. An active contour model, snake, was developed as a useful segmenting and tracking tool for rigid or non-rigid objects. Snake is designed no the basis of snake energies. Segmenting and tracking can be executed successfully by energy minimization. In this research, two new paradigms for segmentation and tracking are suggested. First, because the conventional method uses only intensity information, it is difficult to separate an object from its complex background. Therefore, a new energy and design schemes should be proposed for the better segmentation of objects. Second, conventional snake can be applied in situations where the change between images is small. If a fast moving object exists in successive images, conventional snake will not operate well because the moving object may have large differences in its position or shape, between successive images. Snakes's nodes may also fall into the local minima in their motion to the new positions of the target object in the succeeding image. For robust tracking, the condensation algorithm was adopted to control the parameters of the proposed snake model called "adaptive color snake model(SCSM)". The effectiveness of the ACSM is verified by appropriate simulations and experiments.

  • PDF

A Moving Object Tracking using Color and OpticalFlow Information (컬러 및 광류정보를 이용한 이동물체 추적)

  • Kim, Ju-Hyeon;Choi, Han-Go
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.112-118
    • /
    • 2014
  • This paper deals with a color-based tracking of a moving object. Firstly, existing Camshift algorithm is complemented to improve the tracking weakness in the brightness change of an image which occurs in every frame. The complemented Camshift still shows unstable tracking when the objects with same color of the tracking object exist in background. In order to overcome the drawback this paper proposes the Camshift combined with KLT algorithm based on optical flow. The KLT algorithm performing the pixel-based feature tracking can complement the shortcoming of Camshift. Experimental results show that the merged tracking method makes up for the drawback of the Camshit algorithm and also improves tracking performance.

Multiple Pedestrians Detection and Tracking using Color Information from a Moving Camera (이동 카메라 영상에서 컬러 정보를 이용한 다수 보행자 검출 및 추적)

  • Lim, Jong-Seok;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.3
    • /
    • pp.317-326
    • /
    • 2004
  • This paper presents a new method for the detection of multiple pedestrians and tracking of a specific pedestrian using color information from a moving camera. We first extract motion vector on the input image using BMA. Next, a difference image is calculated on the basis of the motion vector. The difference image is converted to a binary image. The binary image has an unnecessary noise. So, it is removed by means of the proposed noise deletion method. Then, we detect pedestrians through the projection algorithm. But, if pedestrians are very adjacent to each other, we separate them using RGB color information. And we track a specific pedestrian using RGB color information in center region of it. The experimental results on our test sequences demonstrated the high efficiency of our approach as it had shown detection success ratio of 97% and detection failure ratio of 3% and excellent tracking.

Multiple Human Tracking using Mean Shift and Depth Map with a Moving Stereo Camera (카메라 이동환경에서 mean shift와 깊이 지도를 결합한 다수 인체 추적)

  • Kim, Kwang-Soo;Hong, Soo-Youn;Kwak, Soo-Yeong;Ahn, Jung-Ho;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.937-944
    • /
    • 2007
  • In this paper, we propose multiple human tracking with an moving stereo camera. The tracking process is based on mean shift algorithm which is using color information of the target. Color based tracking approach is invariant to translation and rotation of the target but, it has several problems. Because of mean shift uses color distribution, it is sensitive to color distribution of background and targets. In order to solve this problem, we combine color and depth information of target. Also, we build human body part model to handle occlusions and we have created adaptive box scale. As a result, the proposed method is simple and efficient to track multiple humans in real time.