• Title/Summary/Keyword: Moving boundary

Search Result 577, Processing Time 0.022 seconds

What is Happening in the East Sea (Japan Sea)?: Recent Chemical Observations during CREAMS 93-96

  • Kim, Kyung-Ryul;Kim, Kuh
    • Journal of the korean society of oceanography
    • /
    • v.31 no.4
    • /
    • pp.164-172
    • /
    • 1996
  • CREAMS (Circulation Research of the East Asian Marginal Seas) Expeditions have provided a rare opportunity to carry out precise measurements of salinity, temperature and chemical tracers extensively in all major basins of the East Sea (Japan Sea) in 1993-1996 for the first time in more than 60 years since Uda's investigation (Uda, 1934). Studies revealed unequivocal evidence that the East Sea Proper Water (ESPW), previously known as a single homogeneous water mass, is indeed made of several distinct water masses. CREAMS data further confirmed the earlier observations of Gamo et al. (1986) that properties in Deep Waters in the East Sea have been changing during at least the last 25 years. There is evidence, especially from the analysis of the DO profile, that these changes may result from a major change in the mode of deep water formation: from bottom water formation in the past to intermediate/deep water formation in recent years. The causes for these changes are not clear at the present time, but nay include natural variation and may also reflect recent global changes in regional scale. A moving-boundary box model is presented to describe current observations, predicting the turnover time of the total deep and bottom waters to the cold surface waters to be ${\sim}$80 years in 1996.

  • PDF

Experiences of Hope in Clients with Chronic Schizophrenia (만성정신분열증환자의 희망체험에 대한 현상학적 이해)

  • Koh Moon-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.35 no.3
    • /
    • pp.555-564
    • /
    • 2005
  • Purpose: This study was done to uncover the nature of hope experienced by clients with chronic schizophrenia. Method: A phenomenological approach developed by Van Manen was adopted. Data was collected from intensive interviews on 7 clients with chronic schizophrenia and the expatients' biographies and arts. A phenomenological reflection was done in terms of the four life world existentials. Result: Corporeality: Perceiving the body feeling better, proudness of self, accepting their own ill body and transcending the limitation of the body, expressing self, and staying within the boundary of a healthy body were disclosed as the body's experience of hope. Spatiality :A place with safety, freedom, peace, and sharing was the space of hope. Temporality :The essential experience of time with hope was the continuity of moving forward amid cycling and moments being filled up with something. Relationality : Connecting with someone, having someone who is dependable, understandable and exchanging interest and love were identified as the relationships of hope with others. Conclusion: The results of this study show that chronic schizophrenic patients always strive hard to keep hope and they really need someone who can support them.

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Assessment of effect of material properties on seismic response of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.601-619
    • /
    • 2017
  • Cantilever retaining wall movements generally depend on the intensity and duration of ground motion, the response of the soil underlying the wall, the response of the backfill, the structural rigidity, and soil-structure interaction (SSI). This paper investigates the effect of material properties on seismic response of backfill-cantilever retaining wall-soil/foundation interaction system considering SSI. The material properties varied include the modulus of elasticity, Poisson's ratio, and mass density of the wall material. A series of nonlinear time history analyses with variation of material properties of the cantilever retaining wall are carried out by using the suggested finite element model (FEM). The backfill and foundation soil are modelled as an elastoplastic medium obeying the Drucker-Prager yield criterion, and the backfill-wall interface behavior is taken into consideration by using interface elements between the wall and soil to allow for de-bonding. The viscous boundary model is used in three dimensions to consider radiational effect of the seismic waves through the soil medium. In the seismic analyses, North-South component of the ground motion recorded during August 17, 1999 Kocaeli Earthquake in Yarimca station is used. Dynamic equations of motions are solved by using Newmark's direct step-by-step integration method. The response quantities incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that while the modulus of elasticity has a considerable effect on seismic behavior of cantilever retaining wall, the Poisson's ratio and mass density of the wall material have negligible effects on seismic response.

Boundary Noise Removal in Synthesized Intermediate Viewpoint Images for 3D Video (3차원 비디오의 중간시점 합성영상의 경계 잡음 제거 방법)

  • Lee, Cheon;Ho, Yo-Sung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.109-112
    • /
    • 2008
  • 최근 MPEG(moving picture experts group)에서 표준화를 진행하고 있는 3차원 비디오 시스템은 다시점 영상과 깊이영상을 동시에 이용하여 사용자가 임의의 시점을 선택하거나 스테레오스코픽 장치와 같은 3차원 영상 재생장 치를 동해 3차원 영상을 제공하는 차세대 방송 시스템이다 제한된 시점수를 이용하여 보다 많은 시점의 영상을 제공하려면 중간시점의 영상을 보간하는 장치가 필수적이다. 이 시스템의 입력정보인 깊이값을 이용하면 시점이동을 쉽게 할 수 있는데, 보간한 영상의 화질은 이 깊이값의 정확도에 따라 결정된다. 깊이맵은 대개 컴퓨터 비전을 기반으로 한 스테레오 정합기술을 이용 획득하는데, 객체의 경계와 같은 깊이값 불연속 영역에서 주로 깊이값 오류가 발생하게 된다. 이런 오류는 생성한 중간영상의 배경에 원치 않는 잡음을 발생시킨다. 기존의 방법에서는 측정한 깊이법의 객체 경계와 영상의 객체 경계가 일치한다는 가정으로 중간영상을 합성했다. 그러나 실제로는 깊이값 측정 과정에서 두 가지 경계가 일치하지 않아 전경의 일부분이 배경으로 합성되어 잡음을 발생하는 것이다. 본 논문에서는 깊이맵을 기반으로 중간시점의 영상을 보간할 때 발생하는 경계 잡음을 처리하는 방법을 제안한다. 중간영상을 합성할 때 비폐색 영역을 합성한 후 경계 잡음이 발생할 수 있는 영역을 비폐색 영역을 따라 구별한 다음, 잡음이 없는 참조 영상을 이용함으로써 경계 잡음을 처리할 수 있다. 실험 결과를 통해 배경 잡음이 사라진 자연스러운 합성영상을 생성했다.

  • PDF

An Application of Time Discontinuous Finite Element Method for Heat Conduction Problems (열전도 방정식의 시간 불연속 유한요소법 적용)

  • Kim, Chi-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.87-92
    • /
    • 2008
  • A finite element method which is discontinuous in time is developed for the solution of the classical parabolic model of heat conduction problems. The approximations are continuous with respect to the space variables for each fixed time, but they admit discontinuities with respect to the time variable at each time step. The method is superior to other well-known approaches to these problems in that it allows a wider range of moving boundary value problems to be dealt with, such as are encountered in complex engineering operations like ground freezing. The method is applied to one-dimensional and two-dimensional heat conduction problems in this paper, although it could be extended to more higher dimensional problems. Several example problems are discussed and illustrated, and comparisons are made with analytical approaches where these can also be used.

Analytical Solution for Transient Temperature Distribution in Fillet Arc Welding (필릿 용접 공정에서 온도 분포 예측을 위한 해석적 모델)

  • 정선국;조형석
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.68-81
    • /
    • 1995
  • This paper presents an analytical solution to predict the transient temperature distribution in fillet arc welding. The analytical solution is obtained by solving a transient three -dimensional heat conduction equation with convection boundary conditions on the surfaces of an infinite plate with finite thicknesses, and mapping an infinite plate onto the fillet weld geometry with energy equation. The electric arc heat input on fillet weld and on infinite plate is assumed to have a traveling bivariate Gaussian distribution. To check the validity of the solution, GTA and FCA welding experiments were performed under various welding conditions. The actual isotherms of the weldment cross - sections at various distances from the arc start point are compared with those of simulation result. As the result shows a satisfactory accuracy, this analytical solution can be used to predict the transient temperature distribution in the fiIIet weld of finite thickness under a moving bivariate Gaussian distributed heat source. The simplicity and short calculation time of the analytical solution provides rationales to use the analytical solution for modeling the welding control systems or for an optimization tool of welding process parameters.

  • PDF

Numerical Simulation of Body Motion Using a Composite Grid System (중첩 격자계를 이용한 물체운동의 수치 시뮬레이션)

  • 박종천;전호환;송기종
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.5
    • /
    • pp.36-42
    • /
    • 2003
  • A CFD simulation technique has been developed to handle the unsteady body motion with large amplitude by use of overlapping multi-block grid system. The three-dimensional, viscous and incompressible flow around body is investigated by solving the Navier-Stokes equations, and the motion of body is represented by moving effect of the grid system. Composite grid system is employed in order to deal with both the body motion with large amplitude and the condition of numerical wave maker in convenience at the same time. The governing equations, Navier-Stokes (N-S) and continuity equations, are discretized by a finite volume method, in the framework of an O-H type boundary-fitted grid system (inner grid system including test model) and a rectangular grid system (outer grid system including simulation equipments for generation of wave environments). If this study, several flow configurations, such as an oscillating cylinder with large KC number, are studied in order to predict and evaluate the hydrodynamic forces. Furthermore, the motion simulation of a Series 60 model advancing in a uniform flow under the condition of enforced roll motion of angle 20$^{\circ}$ is performed in the developed numerical wave tank.

Numerical Study to the Pulsatile Blood Flow through a Bileaflet Mechanical Heart Valve including Moving Leaflets (판막 거동을 고려한 이엽 기계식 인공심장 판막에서의 맥동유동에 관한 수치해석)

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.504-512
    • /
    • 2002
  • Bileaflet mechanical valves have the complications such as hemolytic and thromboembolic events, leaflet damage, and leaflet break. These complications are related with the fluid velocity and shear stress characteristics of mechanical heart valves. This fact makes clear the importance of determining the fluid velocity and shear stress characteristics of mechanical heart valves, and requires a detailed understanding of these system properties and further substantial research. The first aim of current study is to introduce fluid-structure interaction method for calculation of unsteady and three-dimensional blood flow through bileaflet valve and leaflet behavior interacted with its flow, and to overcome the shortness of previous studies, where the leaflet motion has been ignored or simplified, by using FSI method. To accomplish this goal, a finite volume computational fluid dynamics code and a finite element structure dynamics code have been used concurrently to solve the flow and structure equations, respectively, to investigate the interaction between the blood flow and leaflet. Physiologic ventricular and aortic pressure waveforms were prescribed as flow boundary conditions. The interaction of aortic flow and valve motion were computed.

  • PDF

Numerical Model for Thermal Hydraulic Analysis in Cable-in-Conduit-Conductors

  • Wang, Qiuliang;Kim, Kee-Man;Yoon, Cheon-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.985-996
    • /
    • 2000
  • The issue of quench is related to safety operation of large-scale superconducting magnet system fabricated by cable-in-conduit conductor. A numerical method is presented to simulate the thermal hydraulic quench characteristics in the superconducting Tokamak magnet system, One-dimensional fluid dynamic equations for supercritical helium and the equation of heat conduction for the conduit are used to describe the thermal hydraulic characteristics in the cable-in-conduit conductor. The high heat transfer approximation between supercritical helium and superconducting strands is taken into account due to strong heating induced flow of supercritical helium. The fully implicit time integration of upwind scheme for finite volume method is utilized to discretize the equations on the staggered mesh. The scheme of a new adaptive mesh is proposed for the moving boundary problem and the time term is discretized by the-implicit scheme. It remarkably reduces the CPU time by local linearization of coefficient and the compressible storage of the large sparse matrix of discretized equations. The discretized equations are solved by the IMSL. The numerical implement is discussed in detail. The validation of this method is demonstrated by comparison of the numerical results with those of the SARUMAN and the QUENCHER and experimental measurements.

  • PDF