• Title/Summary/Keyword: Moving barrier

Search Result 55, Processing Time 0.023 seconds

Study on Safety Evaluation Process for Hydrogen Storage System of Hydrogen Bus (수소버스 수소저장용기의 측면충돌 안전성 평가방법 연구)

  • Kyungjin, Kim;Jaeho, Shin;Kyeonghee, Han;Hyeon Min, Han;Jeong Min, In;Siwoo, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.113-119
    • /
    • 2022
  • The structural safety of hydrogen buses is being evaluated for the successful introduction of hydrogen buses. The crash test methodology, for example, side impact test procedure is being discussed for hydrogen bus structure safety with a compressed hydrogen storage system located under the bus floor. Thus this study describes a new experiment method for side impact test with compressed hydrogen storage system independently based on finite element analysis instead of side impact test using full hydrogen bus. A side crash procedure of conceptual compressed hydrogen storage structure was investigated and impact simulations were performed. The finite element models of hydrogen bus, simplified structures, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of three different simplified models. Computational results and research discussion proposed the fundamental test framework for safety assessment of the compressed hydrogen storage system.

Particle Formation and Growth in Dielectric Barrier Discharge - Photocatalysts Hybrid Process for SO2 Removal (SO2 제거를 위한 유전체 장벽 방전 - 광촉매 복합 공정에서의 입자 형성과 성장)

  • Nasonova, Anna;Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.127-132
    • /
    • 2010
  • We analyzed the effects of several process variables on the $SO_2$ removal and particle growth by the dielectric barrier discharge - photocatalysts hybrid process. In this process, $SO_2$ was converted into the ammonium sulfate ($(NH_4)_2SO_4$) particles. The size and crystallinity of ammonium sulfate particles were examined by using TEM and XRD analysis. The dielectric barrier discharge reactor consisted of two zones: the first is for plasma generation and the second is for ammonium sulfate particles formation and growth. The first zone of reactor was filled with glass beads as a dielectric material. To enhance $SO_2$ removal process, the $TiO_2$ photocatalysts were coated on glass beads by dip-coating method. As the voltage applied to the plasma reactor or the pulse frequency of applied voltage increases, the $SO_2$ removal efficiency increases. Also as the initial concentration of $SO_2$ decreases or as the residence time increases, the $SO_2$ removal efficiency increases. $(NH_4)_2SO_4$ particles continue to grow by particle coagulation and surface reaction, moving inside the reactor. Larger particles in site are produced according to the increase of residence time or $SO_2$ concentrations.

  • PDF

Effect of Discharge Electrode Shape of a Barrier Discharge Type Gas Pump on Ionic Wind Generation (장벽 방전형 공기 펌프의 이온풍 발생에 미치는 방전전극 형상의 영향)

  • Hwang, Deok-Hyun;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.994-998
    • /
    • 2009
  • Existing cooling technologies no longer provide adequate heat dissipation due to excessive heat generation caused by the growing component density on electronic devices. An ionic gas pump can be used for the thermal management of micro-electronic devices, since the size of pump can be reduced to a micrometer scale. In addition, the gas pump allows for gas flow control and generation without moving parts. This ideal property of gas pump gives rise to a variety of applications. However, all these applications require maximizing the wind velocity of gas pump. In this study a barrier discharge type gas pump, with a needle-shaped corona electrode instead of a plate-shaped corona electrode, has been investigated by focusing on the corona electrode shape on the wind velocity and wind generation yield. As a result, the enhanced wind velocity and wind generation yield of 1.76 and 3.37 times were obtained with the needle-shaped corona electrode as compared with the plate-shaped corona electrode of the proposed barrier discharge type gas pump.

Characteristics of Vehicle Structure Deformation and Body Injury caused by Side Impact Test using AE-MDB (AE-MDB 시험결과에 따른 인체상해 및 차체 특성)

  • Kim, Doyup;Lee, Jaewan;Chang, Hyungjin;Yong, Boojoong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.34-41
    • /
    • 2011
  • Side collisions (or side crash) account for 51.6% of all car to car accidents occurred in 2010. It is necessary to analyze those vehicles' structure deformation and passengers' injuries in the side collisions. A moving barrier (950kg) is currently used in the KNCAP side impact test. However, in order to enhance a passengers' safety in the side collisions, we introduce an AE-MDB (1500kg) which provides more severe conditions for this test. In this study, the test results using both barriers are compared and analyzed.

SIMULATION OF WATER-OIL-AIR FLOWS AROUND OIL BOOMS UNDER RELATIVE MOTION (상대운동을 하는 방제판 주위 물-기름-공기 유동 모사)

  • Shin, Sangmook
    • Journal of computational fluids engineering
    • /
    • v.21 no.3
    • /
    • pp.31-38
    • /
    • 2016
  • The FDS-HCIB method is expanded to simulate water-oil-air flows around oil booms under relative motion, which is intended to increase the thickness of contained oil. The FDS scheme captures discontinuity in the density field and abrupt change of the tangential velocity across an interface without smearing. The HCIB method handles relative motions of thin oil booms with ease. To validate the developed FDS-HCIB code for water-oil-air flow around a moving body, the computed results are compared with the reported experimental results on the shape, length, and thickness of the oil slicks under towing. It is observed that the increase in pressure field between two barriers lifts the oil slick and the interfacial wave propagates and reflects as one barrier gets closer to the other barrier.

Design and Evaluation of a Vibration Exciter for the Flow Resonance (유동공진을 위한 가진기 설계 및 평가)

  • Nam, Yoon-Su;Choi, Jae-Hyuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.141-147
    • /
    • 2001
  • A heat dissipation technology using flow resonant phenomenon is a kind of new concept in heat transfer area. A vibration exciter is needed to generate an air turbulence which has the natural shedding frequency of a heat system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator. An analytical dynamic model for this mechanical vibration exciter is presented and its validity is verified by the comparison with experimental data. Values of some unko주 system parameters in the analytic model are estimated through the system identification approach. based on this mathematical model, a high bandwidth vibration exciter is designed using feedback control. During the experimental verification phased, it turns out the high frequency modal resonant characteristics of vibrating plate are the major barrier against obtaining a high bandwidth vibration exciter.

  • PDF

Vibration Exciter Design for Flow Resonance (유동공진을 위한 가진기 설계)

  • Nam, Yoon-su;Choi, Jae-hyuck
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.125-130
    • /
    • 2000
  • Heat dissipation technology using flow resonant phenomenon is a kind of new concept in heat transfer area. A vibration exciter is needed to generate air turbulence which has the natural shedding frequency of heat system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator. An analytical dynamic model for this mechanical vibration exciter is presented and its validity is verified by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, a high bandwidth vibration phase, it turns out the high modal resonant characteristics of vibrating plate are the major barrier against obtaining a high bandwidth vibration exciter.

  • PDF

Robust Viewpoint Estimation Algorithm for Moving Parallax Barrier Mobile 3D Display (이동형 패럴랙스 배리어 모바일 3D 디스플레이를 위한 강인한 시청자 시역 위치 추정 알고리즘)

  • Kim, Gi-Seok;Cho, Jae-Soo;Um, Gi-Mun
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.817-826
    • /
    • 2012
  • This paper presents a robust viewpoint estimation algorithm for Moving Parallax Barrier mobile 3D display in sudden illumination changes. We analyze the previous viewpoint estimation algorithm that consists of the Viola-Jones face detector and the feature tracking by the Optical-Flow. The sudden changes in illumination decreases the performance of the Optical-flow feature tracker. In order to solve the problem, we define a novel performance measure for the Optical-Flow tracker. The overall performance can be increased by the selective adoption of the Viola-Jones detector and the Optical-flow tracker depending on the performance measure. Various experimental results show the effectiveness of the proposed method.

The Study on control factor of WorldSID 50%ile dummy injury through AE-MDB side crash test (AE-MDB 측면 충돌 시험 시 WorldSID 50%ile dummy 상해치에 대한 제어인자 연구)

  • Hongyul Sun;Pyokyong Han;Jaesu Kim;Kiseok Kim;Ilsung Yoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.1
    • /
    • pp.5-9
    • /
    • 2014
  • Over the past ten years, since the introduction of the side crash test regulation in Europe, much research work has been performed internationally to develop new and modified test procedures to improve the level of occupant protection offered by vehicles in side crash test. This research has been co-ordinated and finally contributed to development of an AE-MDB(Advanced European Moving Deformable Barrier) and WorldSID (Worldwide Side Impact Dummy). EuroNCAP(European New Car Assessment Program) has the plan to conduct AE-MDB side crash test using WorldSID from 2015 by replacing Progressive MDB and EuroSID II. Automobile manufacturers need to respond to these changes closely. This paper is to find dominant control factor and analyze it of WorldSID 50%ile dummy injury through AE-MDB side crash test by predicting best and worst condition. And control factors will be validated within EuroNCAP regulations. This paper is analyzed by DFSS(Design for six sigma) which contains 5 control factors and is evaluated by ANOVA with the data as a result of LS-DYNA analysis correlated with crash pulse from 50 kph AE-MDB side crash test using WorldSID 50%ile dummy.

Experimental Study on Neck Injury in Low Speed Frontal and Rear-End Collisions

  • Kim, Gyu-Hyun;Lee, Ouk-Sub;Hwang, Si-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1232-1243
    • /
    • 2000
  • Motor vehicle accidents in rear impacts cause more than fifty percents of drivers to suffer from neck injuries. It is known that most neck injuries are associated with rear-end collisions at a speed lower than 32 km/h and between the Abbreviated Injury Scale (AIS) 1 and AIS 2. Two different types of low speed crash tests such as the frontal barrier and rear moving barrier crashes have been conducted by following the procedure of the Research Committee for Automobile Repairs (RCAR). The injury for the neck and the Head Injury Criteria (HIC) were measured by using the sensors mounted on dummies. We reviewed neck injures and the relationship between the neck and head injuries, and examined the deceleration of the body. Using the experimental test data at the neck, we investigated an improved neck injury criterion Nij. Also, the effects of the position of a head restraint on reducing the frequency and severity of the neck injury in rear-end collisions were investigated.

  • PDF