• Title/Summary/Keyword: Moving Vehicle Method

Search Result 405, Processing Time 0.031 seconds

Posture Change Recognition System using Visual Information (영상정보에 의한 자세변화 감지 시스템)

  • Jo, Sung-Won;Han, Kyong-Ho
    • Journal of IKEEE
    • /
    • v.14 no.4
    • /
    • pp.291-296
    • /
    • 2010
  • This paper handles, pitching and rolling posture change detection using the visual image changes due to the road slope conditions. When the moving vehicle is slanted to a direction, the objects in the visual images of the vehicle are moving to up or down and right or left. This is similar to the human's balancing behavior depending on the visual image change detection as well as the vestibular organs and semicircular canal in the ear. The proposes method shows the visual image through the camera can be used for the image information itself and for the posture change detection through the experiments.

Study on Safety Evaluation Process for Hydrogen Storage System of Hydrogen Bus (수소버스 수소저장용기의 측면충돌 안전성 평가방법 연구)

  • Kyungjin, Kim;Jaeho, Shin;Kyeonghee, Han;Hyeon Min, Han;Jeong Min, In;Siwoo, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.113-119
    • /
    • 2022
  • The structural safety of hydrogen buses is being evaluated for the successful introduction of hydrogen buses. The crash test methodology, for example, side impact test procedure is being discussed for hydrogen bus structure safety with a compressed hydrogen storage system located under the bus floor. Thus this study describes a new experiment method for side impact test with compressed hydrogen storage system independently based on finite element analysis instead of side impact test using full hydrogen bus. A side crash procedure of conceptual compressed hydrogen storage structure was investigated and impact simulations were performed. The finite element models of hydrogen bus, simplified structures, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of three different simplified models. Computational results and research discussion proposed the fundamental test framework for safety assessment of the compressed hydrogen storage system.

A Study on the Laser Designator for the Missile System Using Semi-Active Laser Seeker (반능동 레이저 탐색기를 사용하는 유도무기체계의 레이저 조사기 연구)

  • Bae, Minji;Ha, Jaehoon;Park, Heechan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.466-474
    • /
    • 2020
  • Semi-active laser missile systems with high accuracy are necessary to asymmetric threats, such as UAV(Unmanned Aerial Vehicle). They are usually used to attack stationary or slow moving targets, therefore we should study on the laser designator which can detect and track fast moving targets in order to deal with UAV. In this study, design specifications are came up through performance analysis of existing laser designators, and laser designation method for fast moving target is developed. The detection and tracking performance of developed laser designator are verified through inside/outside tests on ground/aerial stationary/moving targets. Through this study, we obtain laser designator techniques that could be applied to actual semi-active laser missile systems.

A Clustering Scheme for Discovering Congested Routes on Road Networks

  • Li, He;Bok, Kyoung Soo;Lim, Jong Tae;Lee, Byoung Yup;Yoo, Jae Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1836-1842
    • /
    • 2015
  • On road networks, the clustering of moving objects is important for traffic monitoring and routes recommendation. The existing schemes find out density route by considering the number of vehicles in a road segment. Since they don’t consider the features of each road segment such as width, length, and directions in a road network, the results are not correct in some real road networks. To overcome such problems, we propose a clustering method for congested routes discovering from the trajectories of moving objects on road networks. The proposed scheme can be divided into three steps. First, it divides each road network into segments with different width, length, and directions. Second, the congested road segments are detected through analyzing the trajectories of moving objects on the road network. The saturation degree of each road segment and the average moving speed of vehicles in a road segment are computed to detect the congested road segments. Finally, we compute the final congested routes by using a clustering scheme. The experimental results showed that the proposed scheme can efficiently discover the congested routes in different directions of the roads.

A Formation Control of Swarm Unmanned Surface Vehicles Using Potential Field Considering Relative Velocity (상대속도를 고려한 포텐셜 필드 기반 군집 무인수상선의 대형 제어)

  • Seungdae Baek;Minseung Kim;Joohyun Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.170-184
    • /
    • 2024
  • With the advancement of autonomous navigation technology in maritime domain, there is an active research on swarming Unmanned Surface Vehicles (USVs) that can fulfill missions with low cost and high efficiency. In this study, we propose a formation control algorithm that maintains a certain shape when multiple unmanned surface vehicles operate in a swarm. In the case of swarming, individual USVs need to be able to accurately follow the target state and avoid collisions with obstacles or other vessels in the swarm. In order to generate guidance commands for swarm formation control, the potential field method has been a major focus of swarm control research, but the method using the potential field only uses the position information of obstacles or other ships, so it cannot effectively respond to moving targets and obstacles. In situations such as the formation change of a swarm of ships, the formation control is performed in a dense environment, so the position and velocity information of the target and nearby obstacles must be considered to effectively change the formation. In order to overcome these limitations, this paper applies a method that considers relative velocity to the potential field-based guidance law to improve target following and collision avoidance performance. Considering the relative velocity of the moving target, the potential field for nearby obstacles is newly defined by utilizing the concept of Velocity Obstacle (VO), and the effectiveness and efficiency of the proposed method is verified through swarm control simulation, and swarm control experiments using a small scaled unmanned surface vehicle platform.

Design Optimization of Over-slam Bumper for Moving Part Over-travel (무빙부품의 과다 닫힘 방지를 위한 오버슬램 범퍼 최적설계)

  • Choi, Yeonwook;Ki, Wonyong;Lee, Jonghyun;Heo, Seung-Jin;Rhie, Chulhong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.5
    • /
    • pp.66-72
    • /
    • 2014
  • A kinematic analysis method has been used as analysis method for dynamic behavior of moving parts of vehicle, especially hood part. Such analysis method, however, has its limitations in terms of design technology, including, over travel of hood that occurs due to lack of considerations of compliance characteristics, such as flexible components of hood's weather strip and over slam bumper. Therefore, it is necessary to develop a modeling which reflects compliance of flexible components of hood and elastic characteristics of panel for improvement of design process. In this thesis, a finite element method as mentioned earlier, is developed to represent over travel of hood. Also optimization process applying sequential approximate optimization is suggested to prevent over travel. The over travel analysis method and optimization process, which are developed through the research, would make it possible to design with high quality and credibility. Furthermore, it is expected that the time for design would be reduced and the design quality also improved.

Efficient method of Searching PI Code on RDS System (RDS System 에서의 효율적인 PI code 검출 기법에 관한 연구)

  • Cho, Chung-bum;Kim, Yound-cil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.112-115
    • /
    • 2009
  • PI code searching method of RDS(Radio Data System) are unique method of maintain desired channel on moving machine like vehicle. Efficient and fast PI code search method are researching on the all of RDS related systems for both find more better channel before Original channel signal go to bad and find desired good signal quickly when get out of Weak signal Area. But Embedded system has limited environment like memory size, so It is very difficult to apply many well known PI code searching method. This thesis suggests simple and effective method of searching PI code, considering a Embedded System Environment.

  • PDF

Study on dynamic behavior analysis of towed line array sensor

  • Shin, Hyun-Kyoung;Ryue, Jung-Soo;Ahn, Hyung-Taek;Seo, Hee-Seon;Kwon, Oh-Cho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.9-19
    • /
    • 2012
  • A set of equations of motion is derived for vibratory motions of an underwater cable connected to a moving vehicle at one end and with drogues at the other end. From the static analysis, cable configurations are obtained for different vehicle speeds and towing pretensions are determined by fluid resistance of drogues. Also the dynamic analysis is required to predict its vibratory motion. Nonlinear fluid drag forces greatly influence the dynamic tension. In this study, a numerical analysis program was developed to find out the characteristic of cable behaviour. The motion is described in terms of space and time coordinates based on Chebyshev polynomial expansions. For the spatial integration the collocation method is employed and the Newmark method is applied for the time integration. Dynamic tensions, displacements, velocities, accelerations were predicted in the time domain while natural frequencies and transfer functions were obtained in the frequency domain.

Markov Model-based Static Obstacle Map Estimation for Perception of Automated Driving (자율주행 인지를 위한 마코브 모델 기반의 정지 장애물 추정 연구)

  • Yoon, Jeongsik;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.29-34
    • /
    • 2019
  • This paper presents a new method for construction of a static obstacle map. A static obstacle is important since it is utilized to path planning and decision. Several established approaches generate static obstacle map by grid method and counting algorithm. However, these approaches are occasionally ineffective since the density of LiDAR layer is low. Our approach solved this problem by applying probability theory. First, we converted all LiDAR point to Gaussian distribution to considers an uncertainty of LiDAR point. This Gaussian distribution represents likelihood of obstacle. Second, we modeled dynamic transition of a static obstacle map by adopting the Hidden Markov Model. Due to the dynamic characteristics of the vehicle in relation to the conditions of the next stage only, a more accurate map of the obstacles can be obtained using the Hidden Markov Model. Experimental data obtained from test driving demonstrates that our approach is suitable for mapping static obstacles. In addition, this result shows that our algorithm has an advantage in estimating not only static obstacles but also dynamic characteristics of moving target such as driving vehicles.

Development of Modeling Method of Hysteretic Characteristics for Accurate Load Measurement of Trucks (상용차량의 정확한 하중 측정을 위한 겹판스프링의 이력특성 모델링 기법 개발)

  • Seo, M.K.;Batbayar, E.;Shin, H.Y.;Lee, H.Y.;Ko, J.I.
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.38-45
    • /
    • 2021
  • In recent years, the demand for an onboard scale system which can directly monitor load distribution and overload of vehicles has increased. Depending on the suspension type of the vehicle, the onboard scale system could use different types of sensors, such as, angle sensors, pressure sensors, load cells, etc. In the case of a vehicle equipped with leaf spring suspension system, the load of the vehicle is measured by using the deflection or displacement of the leaf spring. Leaf springs have hysteresis characteristics that vary in displacement depending on the load state. These characteristics cause load measurement errors when moving or removing cargoes. Therefore, this study aimed at developing an onboard scale device for cargo vehicles equipped with leaf springs. A sectional modeling method which can reduce measurement errors caused by hysteresis characteristics was also proposed.