• Title/Summary/Keyword: Moving Target Defense

Search Result 75, Processing Time 0.023 seconds

GMTI Two Channel Raw Data Processing and Analysis (GMTI 2채널 원시데이터 처리 및 분석)

  • Kim, So-Yeon;Yoon, Sang-Ho;Shin, Hyun-Ik;Youn, Jae-Hyuk;Kim, Jin-Woo;You, Eung-Noh
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.847-855
    • /
    • 2018
  • GMTI (Ground Moving Target Indicator) is a kind of airborne radar function that is used widely in military applications to detect the moving targets on the ground. In this paper, GMTI signal processing technique was presented and its performance was verified using sum and difference channels raw data obtained by the captive flight test.

K-Band Radar Development for the Ground Moving Vehicle (지상 이동 차량용 K-대역 레이다 개발)

  • Lee, Jong-Min;Cho, Byung-Lae;Sun, Sun-Gu;Lee, Jung-Soo;Park, Sang-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.362-370
    • /
    • 2011
  • This paper presents a K-band radar system installed on the ground moving vehicle to detect and track a high-speed target. The presented radar is separated into three search regions to satisfy a wide area detection and a limitation of the installing space of the radar, and each region performs detecting the target independently and tracking the detected target automatically. The presented radar radiating K-band FMCW waveform acquires range and velocity information of the target at the every dwell and receiving antenna of the radar is applied the multiple baseline interferometer to extract the precise angle information of the target. 3-dimensional tracking accuracy of the radar is 0.25 m RMSE measured actually through a fire experiment of an imitation target.

Sliding Window Filtering for Ground Moving Targets with Cross-Correlated Sensor Noises

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.146-151
    • /
    • 2019
  • This paper reports a sliding window filtering approach for ground moving targets with cross-correlated sensor noise and uncertainty. In addition, the effect of uncertain parameters during a tracking error on the model performance is considered. A distributed fusion sliding window filter is also proposed. The distributed fusion filtering algorithm represents the optimal linear combination of local filters under the minimum mean-square error criterion. The derivation of the error cross-covariances between the local sliding window filters is the key to the proposed method. Simulation results of the motion of the ground moving target a demonstrate high accuracy and computational efficiency of the distributed fusion sliding window filter.

A Study on Robust Moving Target Detection for Background Environment (배경환경에 강인한 이동표적 탐지기법 연구)

  • Kang, Suk-Jong;Kim, Do-Jong;Bae, Hyeon-Deok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.55-63
    • /
    • 2011
  • This paper describes new moving target detection technique combining two algorithms to detect targets and reject clutters in video frame images for surveillance system: One obtains the region of moving target using phase correlation method using $N{\times}M$ sub-block images in frequency domain. The other uses adaptive threshold using learning weight for extracting target candidates in subtracted image. The block region with moving target can be obtained using the characteristics that the highest value of phase correlation depends on the movement of largest image in block. This technique can be used in camera motion environment calculating and compensating camera movement using FFT phase correlation between input video frame images. The experimental results show that the proposed algorithm accurately detects target(s) with a low false alarm rate in variety environment using the receiver operating characteristics (ROC) curve.

Computation of Launch Acceptability Region of Air-to-Surface Guided Bomb for Moving Target (이동표적에 적용 가능한 공대지 유도폭탄의 투하 가능 영역)

  • Kang, Yejun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.601-608
    • /
    • 2021
  • Launch Acceptability Region of Air-to-Surface Guided Bomb is defined as the set of release points in order to reach a target successfully. LAR is consisted of fixed target area and moving target area whether the target maneuvers or not. In this paper, the computational algorithm of LAR is studied for fixed and moving target. First, multi-simulations are performed varying platform, target, and atmospheric environment to attain Min/Max DB. Second, the LAR functions are obtained using regression and classification algorithm. For operational suitability, the algorithm for display of LAR is studied to obtain appropriate LAR. In this progress, the results of LAR are suitable to apply air-to-ground guided bomb for moving target.

Study of the Bomb Hit Indication of Moving Target Using Weapon Data Link Message (무장데이터링크 메시지를 이용한 기동표적 타격평가 연구)

  • Baek, Inhye;Woo, Sang Hyo;Kim, Ki Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.187-196
    • /
    • 2021
  • The Network-Centric warfare over weapon data link networks has been developed for the recent decade. Since the US navy had begun to develop tactical digital information chain, it has gradually transformed into weapon data link technology. As data link network system and its protocol have been advanced into high-technology, focusing and targeting on moving targets become possible in net-enabled environments. However, it is difficult to identify the primary information from numerous battlefields and understanding approaches to damage a target in a timely manner. In this paper, to better understand the targeting assessment, we suggest a specific solution: Bomb Hit Indication(BHI) using information in weapon data link messages. In order to prove our suggestion, we implement the BHI solution and apply it into the weapon data link integrating system.

A Virtual Array Design of 77 GHz Vehicle Radar for Detecting Moving Targets (이동표적 탐지를 위한 77 GHz 차량레이더용 가상배열 설계)

  • Kim, Doo-Soo;Hong, Dong-Hee;Joo, Jeong-Myeong;Yang, Jin-Mo;Lee, Sang-In
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.435-444
    • /
    • 2015
  • This paper specifies on a virtual array design of a 77 GHz vehicle radar for detecting a moving target at a time division transmit and a near range. The virtual array designed reduces a hardware complexity, weight and price. However, a synthesized beam of the virtual array has a high side lobe by a phase distortion of receive signals when the moving target is detected at the time division transmit. For this, a subarray receive signal with a same phase is used and the side lobe of the synthesized beam is suppressed above at least 10 dB. Also the virtual array has a beam distortion by a spherical wave when the vehicle radar operates at near range. So a boresight receive signal of each target range is compensated at each receive signal. Therefore the synthesized beam with compensation recovers a normal main lobe and improves the side lobe about 10~15 dB.

Performance Analysis of SDR Communication System Based on MTD Technology (MTD 기법이 적용된 SDR 통신 시스템의 성능 분석)

  • Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.51-56
    • /
    • 2017
  • With the rapid increase in the number of mobile terminals, demand for wireless technologies has sharply increased these days. While wireless communication provides advantages such as ease of deployment, mobility of terminals, continuity of session, and almost comparable transmission bandwidth to the wired communication, it has vulnerability to malicious radio attacks such as eavesdropping, denial of service, session hijacking, and jamming. Among a variety of methods of preventing wireless attacks, the MTD(Moving Target Defense) is the technique for improving the security capability of the defense system by constantly changing the ability of the system to be attacked. In this paper, in order to develop a resilient software defined radio communication testbed system, we present a novel MTD approach to change dynamically and randomly the radio parameters such as modulation scheme, operating frequency, packet size. The probability of successful attack on the developed MTD-based SDR communication system has been analysed in a mathematical way and verified through simulation.

Velocity Estimation of Moving Targets on the Sea Surface by Azimuth Differentials of Simulated-SAR Image

  • Yang, Chang-Su;Kim, Youn-Seop;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.297-304
    • /
    • 2010
  • Since the change in Doppler centroid according to moving targets brings alteration to the phase in azimuth differential signals of synthetic aperture radar (SAR) data, one can measure the velocity of the moving targets using this effect. In this study, we will investigate theoretically measuring the velocity of an object from azimuth differential signals by using range compressed data which is the interim outcome of treatment from the simulated SAR raw data of moving targets on the background of sea clutter. Also, it will provide evaluation for the elements that affect the estimation error of velocity from a single SAR sensor. By making RADARSAT-1 simulated image as a specific case, the research includes comparisons for the means of velocity measurement classified by the directions of movement in the four following cases. 1. A case of a single target without currents, 2. A case of a single target with tidal currents of 0.5 m/s, 1 m/s, and 3 m/s, 3. A case of two targets on a same azimuth line moving in a same direction and velocity, 4. A case of a single target contiguous to land where radar backscatter is strong. As a result, when two moving targets exist in SAR image outside the range of approximately 256 pixels, the velocity of the object can be measured with high accuracy. However, when other moving targets exist in the range of approximately 128 pixels or when the target was contiguous to the land of strong backscatter coefficient (NRCS: normalized radar cross section), the estimated velocity was in error by 10% at the maximum. This is because in the process of assuming the target's location, an error occurs due to the differential signals affected by other scatterers.

Target Position Correction Method in Monopulse GMTI Radar (GMTI 표적의 위치 보정 방법)

  • Kim, So-Yeon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.441-448
    • /
    • 2020
  • GMTI (Ground Moving Target Indication) radar system can detect ground moving targets and can provide position and velocity information of each target. However, the azimuth position of target has some offset because of the hardware errors such as mechanical tolerances. In this case, an error occurs no matter how accurate the monopulse ratio is. In this paper, target position correction method in azimuth direction has been proposed. The received sum and difference signals of monopulse GMTI system are post-processed to correct the target azimuth angle error. This method is simple and adaptive for nonhomogeneous area because it can be implemented by using only software without any hardware modification or addition.