• Title/Summary/Keyword: Moving Surface method

검색결과 390건 처리시간 0.026초

이동 슬라이딩 서피스를 이용한 로봇의 빠른 추적제어

  • 최승복;정재천;박동원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2001년도 추계학술대회 논문집
    • /
    • pp.164-168
    • /
    • 2001
  • In this paper, we introduce a new sliding surface adaptable to arbitrary initial conditions. The surface is initially designed to pass given intial errors and subsequently moves towards a predetermined surface via rotating or/and shifting. We call it as a moving sliding surface (MSS) comparing with the conventional ones, for instances, employed by Slotine and Sastry. Using the MSS, it is shown that the tracking is much faster than conventional one without increasing the magnitude of discontinuous control gain. To demonstrate some advantages of the proposed method, we apply the MSS to the path tracking control of a two-degree-of-freedom robotic manipulator subjected to external disturbances.

Acoustic Analysis of Axial Fan using BEM based on Kirchhoff Surface (Kirchhoff Surface 변화에 따른 송풍기 소음의 BEM 해석)

  • 박용민;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.772-777
    • /
    • 2002
  • A BEM is highly efficient method in the sense of economic computation. However, boundary integration is not easy for the complex and moving surface e.g. in a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element depending on its acoustic characteristics. In this study, an axial fan is assumed to have loading noise as a dominant source. Dipole sources can be computed based on the FW-H equation. Acoustic field is then computed by changing Kirchhoff surfaces on which near-field is implemented, to analyze the effect of Kirchhoff surface on it.

  • PDF

A numerical simulation method for the flow around floating bodies in regular waves using a three-dimensional rectilinear grid system

  • Jeong, Kwang-Leol;Lee, Young-Gill
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권3호
    • /
    • pp.277-300
    • /
    • 2016
  • The motion of a floating body and the free surface flow are the most important design considerations for ships and offshore platforms. In the present research, a numerical method is developed to simulate the motion of a floating body and the free surface using a fixed rectilinear grid system. The governing equations are the continuity equation and Naviere-Stokes equations. The boundary of a moving body is defined by the interaction points of the body surface and the centerline of a grid. To simulate the free surface the Modified Marker-Density method is implemented. Ships advancing in regular waves, the interaction of waves by a fixed circular cylinder array and the response amplitude operators of an offshore platform are simulated and the results are compared with published research data to check the applicability. The numerical method developed in this research gives results good enough for application to the initial design stage.

The method to reduce the travel time of the gentry in (sLb-Camera-pLb) type ((sLb-Camera-pLb)타입의 겐트리 이동시간 단축 방법)

  • Kim, Soon-Ho;Kim, Chi-Su
    • Journal of the Korea Convergence Society
    • /
    • 제10권4호
    • /
    • pp.39-43
    • /
    • 2019
  • The gantry of surface mount equipment (SMD) is responsible for transferring parts from the feeder to the PCB. At this time, the moving time of the gantry affects the yield. Therefore, in this paper, we propose the fastest path from the suction to the mounting to reduce the gantry travel time. This path is a case where the velocity in front of the camera is 2m/sec due to the nature of the gantry. Therefore, the trajectory graph of this case was created through simulation and the travel time was calculated. As a result, we can see that the moving time of the moving-motion method proposed in this paper is 20% shorter than the current stop-motion method.

A Numerical Study on Flow and Cooling Characteristics of Impinging Jets on a Moving Plate (이동하는 평판에서 충돌제트의 유동 및 냉각 특성에 대한 수치적 연구)

  • Jeon, Jin-Ho;Suh, Young-Ho;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2562-2567
    • /
    • 2008
  • Jet impingement on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The liquid-gas interface or free surface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The computations are made for multiple jets as well as a single jet to compare their flow characteristics. Also, the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF

An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations

  • Shokouhifard, Vahid;Mohebpour, Saeedreza;Malekzadeh, Parviz;Alighanbari, Hekmat
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.61-76
    • /
    • 2020
  • In this paper, the dynamic behaviour of an inclined functionally graded material (FGM) beam with different boundary conditions under a moving mass is investigated based on the first-order shear deformation theory (FSDT). The material properties vary continuously along the beam thickness based on the power-law distribution. The system of motion equations is derived by using Hamilton's principle. The finite element method (FEM) is adopted to develop a general solution procedure. The moving mass is considered on the top surface of the beam instead of supposing it on the mid-plane. In order to consider the Coriolis, centrifugal accelerations and the friction force, the contact force method is used. Moreover, the effects of boundary conditions, the moving mass velocity and various material distributions are studied. For verification of the present results, a comparative fundamental frequency analysis of an FGM beam is conducted and the dynamic transverse displacements of the homogeneous and FGM beams traversed by a moving mass are compared with those in the existing literature. There is a good accord in all compared cases. In this study for the first time in dynamic analysis of the inclined FGM beams, the Coriolis and centrifugal accelerations of the moving mass are taken into account, and it is observed that these accelerations can be ignored for the low-speeds of the moving mass. The new provided results for dynamics of the inclined FGM beams traversed by a moving mass can be significant for the scientific and engineering community in the area of FGM structures.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • 제23권2호
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

A Study on a 3D Modeling for surface Inspection of a Moving Object (비등속 이동물체의 표면 검사를 위한 3D 모델링 기술에 관한 연구)

  • Ye, Soo-Young;Yi, Young-Youl;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • 제8권1호
    • /
    • pp.15-21
    • /
    • 2007
  • We propose a 3D modeling method for surface inspection of non-constant velocity moving object. 1'lie laser lines reflect tile surface curvature. We can acquire 3D surface information by analyzing projected laser lines on object. In this paper, we use multi-line laser to improve the single stripe method and high speed of single frame. Binarization and edge extraction of frame image were proposed for robust laser each line extraction. A new labeling method was used for laser line labeling. We acquired some feature points for image matching from the frame data and juxtaposed the frames data to obtain a 3D shape image. We verified the superiority of proposed method by applying it to inspect container's damages.

  • PDF

A Formation Control of Swarm Unmanned Surface Vehicles Using Potential Field Considering Relative Velocity (상대속도를 고려한 포텐셜 필드 기반 군집 무인수상선의 대형 제어)

  • Seungdae Baek;Minseung Kim;Joohyun Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제61권3호
    • /
    • pp.170-184
    • /
    • 2024
  • With the advancement of autonomous navigation technology in maritime domain, there is an active research on swarming Unmanned Surface Vehicles (USVs) that can fulfill missions with low cost and high efficiency. In this study, we propose a formation control algorithm that maintains a certain shape when multiple unmanned surface vehicles operate in a swarm. In the case of swarming, individual USVs need to be able to accurately follow the target state and avoid collisions with obstacles or other vessels in the swarm. In order to generate guidance commands for swarm formation control, the potential field method has been a major focus of swarm control research, but the method using the potential field only uses the position information of obstacles or other ships, so it cannot effectively respond to moving targets and obstacles. In situations such as the formation change of a swarm of ships, the formation control is performed in a dense environment, so the position and velocity information of the target and nearby obstacles must be considered to effectively change the formation. In order to overcome these limitations, this paper applies a method that considers relative velocity to the potential field-based guidance law to improve target following and collision avoidance performance. Considering the relative velocity of the moving target, the potential field for nearby obstacles is newly defined by utilizing the concept of Velocity Obstacle (VO), and the effectiveness and efficiency of the proposed method is verified through swarm control simulation, and swarm control experiments using a small scaled unmanned surface vehicle platform.