• 제목/요약/키워드: Moving Surface method

검색결과 390건 처리시간 0.03초

쿼드콥터 자세 변화에 대응한 착륙 접지면 수평 유지 시스템 (System for Leveling Landing Surface in Response to Changes in Quadcopter Posture)

  • 권영근;천동훈;황성현;최지욱;강호선;이장명
    • 로봇학회논문지
    • /
    • 제16권2호
    • /
    • pp.155-163
    • /
    • 2021
  • In this paper, we propose a four 2-link robotic leg landing system that is used for leveling the bottom of the landing system, even when the quadcopter posture is changed. The case of conventional skid type landing gear has a risk when the quadcopter lands on a moving vehicle because the skid type landing gear is tilted to the landing site at this situation. To solve this problem, it is necessary to level the bottom of the landing system when the quadcopter posture is changed in the flight. Therefore, the proposed landing system used a four 2-link robotic leg with leveling method. The leveling method was derived from the method of determining a plane. The superiority of the proposed system was verified with 6-axis stewart platform and real flight experiment, and it shows feasibility of leveling method and proposed landing system.

A NUMERICAL METHOD TO ANALYZE GEOMETRIC FACTORS OF A SPACE PARTICLE DETECTOR RELATIVE TO OMNIDIRECTIONAL PROTON AND ELECTRON FLUXES

  • Pak, Sungmin;Shin, Yuchul;Woo, Ju;Seon, Jongho
    • 천문학회지
    • /
    • 제51권4호
    • /
    • pp.111-117
    • /
    • 2018
  • A numerical method is proposed to calculate the response of detectors measuring particle energies from incident isotropic fluxes of electrons and positive ions. The isotropic flux is generated by injecting particles moving radially inward on a hypothetical, spherical surface encompassing the detectors. A geometric projection of the field-of-view from the detectors onto the spherical surface allows for the identification of initial positions and momenta corresponding to the clear field-of-view of the detectors. The contamination of detector responses by particles penetrating through, or scattering off, the structure is also similarly identified by tracing the initial positions and momenta of the detected particles. The relative contribution from the contaminating particles is calculated using GEANT4 to obtain the geometric factor of the instrument as a function of the energy. This calculation clearly shows that the geometric factor is a strong function of incident particle energies. The current investigation provides a simple and decisive method to analyze the instrument geometric factor, which is a complicated function of contributions from the anticipated field-of-view particles, together with penetrating or scattered particles.

사각기둥의 전면 부가구조물 설치로 인한 입사붕괴파의 충격력 완화 효과 (Mitigation Effects of Incident Bore Impact Loads Acting on a Tall Structure by Installation of Obstacles)

  • 이병혁;황성철;박종천
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.93-101
    • /
    • 2013
  • The incident bore impact loads acting on a tall structure is simulated using the refined Moving Particle Simulation (MPS) method. The particle method is more feasible and effective than conventional grid-based methods for the violent free-surface problems. In the present study, the simulation results for the temporal change of the hydrodynamic force on the structure and longitudinal velocity component around the structure are compared with the experiments (Radd and Bidoae, 2005). And the mitigation effects by installation of various obstacles in front of the main structure are investigated and discussed form the simulation results.

반응표면법을 이용한 압축기 루프 파이프의 최적 설계 (Design Optimization of a Compressor Loop Pipe using Response Surface Method)

  • 강정환;박종찬;김좌일;왕세명;정충민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.404-409
    • /
    • 2004
  • A compressor loop pipe is the most important part in a refrigerator from the view of structural vibration and noise. Vibration energy generated from a compressor's inner body is transmitted to the shell and outside through the loop pipe. For this reason it is very important to design a compressor loop pipe. But, for geometrical complexity and dynamic nonlinearity of the loop pipe, analysis and design of the loop pipe is very difficult. So the statistical and experimental methods have to be used for design of this system. The response surface method (RSM) becomes a popular meta-modeling technique f3r the complex system as this loop pipe. As starting point of loop pile's optimization, FEA model and simple experimental model are used instead of the real loop pipe model. After RS model was constructed, using sensitivity-based optimizer performed optimization for the loop pipe. And the moving least square method (MLSM) was applied to reduce the approximation error.

  • PDF

직선 운동하는 공구에 대한 Z-맵의 갱신 방법 (A Z-map Update Method for Linearly Moving tools)

  • 맹승렬;백낙훈;신성용;최병규
    • 한국CDE학회논문집
    • /
    • 제7권4호
    • /
    • pp.219-232
    • /
    • 2002
  • In numerically controlled(NC) machining simulation, a Z-map has been used frequently for representing a workpiece. Since the Z-map is usually represented by a set of Z-axis aligned vectors, the machining process can be simulated through calculating the intersection points between the vectors and the surface swept by a machining tool. In this paper, we present an efficient method to calculate those intersection points when an APT-type tool moves along a linear tool path. Each of the intersection points can be expressed as the solution of a system of non-linear equations. We transform this system of equations into a single-variable equation, and calculate the candidate interval in which the unique solution exists. We prove the existence of a solution and its uniqueness in this candidate interval. Based on these characteristics, we can effectively apply numerical methods to finally calculate the solution of the non-linear equations within a given precision. The whole process of NC simulation can be achieved by updating the Z-map properly. Our method can provide more accurate results with a little more processing time, in comparison with the previous closed-form solution.

미세 와이어의 전단에 관한 연구 (A study on the shearing of the straightened micro-wire)

  • 신용승;홍남표;김병희;김헌영;김웅겸
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 금형가공,미세가공,플라스틱가공 공동 심포지엄
    • /
    • pp.175-180
    • /
    • 2005
  • In this study, we have developed a novel wire straightener which uses the direct heating method (DHM) fer straightening the micro wire. Also, we have developed a shearing device for cutting the micro wire. In order to avoid the surface oxidization, we supplied the inert gas(Ar) during the heating process and examined the effect of gas flow rate. The effects of the tension and the current applied to the tungsten micro wires were also thoroughly studied. From various experiments and analyses, we could obtain fine straightness $(\approx1\;{\mu}m/1000\;{\mu}m)$ and roundness $(<{\pm}2{\mu}m\;/100{\mu}m)$ when the tension is $500\~~600gf$ and the current is about 1.5A. for burrfree cutting, counter-punch method which two cutters moving contrary was used. The cutting blade has various U-groove angle where upper $10^{\circ}$, $mid:25^{\circ}$, lower $0^{\circ}$. After the shearing process, we confirmed the shearing section.

  • PDF

벤틸레이티드 디스크 브레이크의 열응력 해석 (Thermal Stress Analysis of Ventilated Disc Brake)

  • 김양술;안수철
    • 한국안전학회지
    • /
    • 제23권3호
    • /
    • pp.25-29
    • /
    • 2008
  • In automotive disc brake system, friction heat is not uniformly distributed due to various reasons such as thermal expansion and imperfections in geometry. It is well known that thermoelastic distortion due to fictional heating affects the contact pressure distribution and can lead to thermoelastic instability, where the contact load is concentrated in one or more small regions on the brake disc surface. These regions then take very high temperatures and passage of hot spots moving under the brake pads can cause low frequency vibration called brake judder. This paper presents the FEM(finite element method) result for the temperature distribution of ventilated disc brake. A steady state two-dimensional model of disc brake system predicts the surface temperatures during a multi-stop driving schedule.

Finite Element Analysis of Multiple Subsurface Cracks in Half-space Due to Sliding Contact

  • Lee, Sang Yun;Kim, Seock Sam
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.12-16
    • /
    • 2001
  • A finite element analysis of crack propagation in a half-space due to sliding contact was performed. The sliding contact was simulated by a rigid asperity moving across the surface of an elastic half-surface containing single and multiple cracks. Single, coplanar, and parallel cracks were modeled to investigate the interaction effects on the crack growth in contact fatigue. The analysis was based on linear elastic fracture mechanics and the stress intensity factor concept. The crack propagation direction was predicted based on the maximum range of the shear and tensile stress intensity factors.

  • PDF

Surface Passivation Schemes for High-Efficiency c-Si Solar Cells - A Review

  • Balaji, Nagarajan;Hussain, Shahzada Qamar;Park, Cheolmin;Raja, Jayapal;Yi, Junsin;Jeyakumar, R.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제16권5호
    • /
    • pp.227-233
    • /
    • 2015
  • To reduce the cost of solar electricity, the crystalline-silicon (c-Si) photovoltaic industry is moving toward the use of thinner wafers (100 μm to 200 μm) to achieve a high efficiency. In this field, it is imperative to achieve an effective passivation method to reduce the electronic losses at the c-Si interface. In this article, we review the most promising surface passivation schemes that are available for high-efficiency solar cells.

흠진 수직 증발관에서 유동 및 열/물질 전달 해석 (Flow, Heat and Mass Transfer Analysis for Vertical Grooved Tube Evaporator)

  • 박일석;최도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.108-113
    • /
    • 1998
  • A numerical investigation for the flow, heat and mass transfer characteristics of the grooved evaporating tube with the films flowing down on both the inside and outside tube walls has been carried out. The condensation occurs along the outside wall while the evaporation takes place at the free surface of the inside film. The 3-D transport equations for momentum and energy are solved by using the FVM(Finite Volume Method). The free surface shape is tracked by the moving grid technique satisfying the SCL(Space Conservation Rule). Due to the secondary motion of the fluid, the film thins at the crest, while thickens at the valley. The velocity and temperature fields as well as the amounts of the condensed and evaporated mass have been successfully predicted for various operating conditions and groove shapes.

  • PDF