• 제목/요약/키워드: Moving Platform

Search Result 301, Processing Time 0.04 seconds

Multi-Mode Radar System Model Design for Helicopter (헬기탑재 다중모드 레이다 시스템 모델 설계)

  • Kwag, Young-Kil;Bae, Jae-Hoon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.208-212
    • /
    • 2003
  • An airborne radar is an essential aviation electronic system of the helicopter to perform various missions in all-weather environments. This paper presents the conceptual design results of the multi-mode pulsed Doppler radar system testbed model for helicopter. Due to the inherent flight nature of the hovering vehicle which is flying in low-altitude and low speed, as well as rapid maneuvering, the moving clutters from the platform should be suppressed by using a special MTD (Moving Target Detector) processing. For the multi-mode radar system model design, the flight parameters of the moving helicopter platform were assumed: altitude of 3 Km, average cruising velocity of 150knots. The multi-mode operation capability was applied such as short-range, medium-range, and long-range depending on the mission of the vehicle. The nominal detection ranges is 30 Km for the testbed experimental model, but can be expanded up to 75 Km for the long range weather mode. The detection probability of each mode is also compared in terms of the signal-to noise ratio of each mode, and the designed radar system specifications ate provided as a design results.

  • PDF

A Parallel Approach to Navigation in Cities using Reconfigurable Mesh

  • El-Boghdadi, Hatem M.;Noor, Fazal
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2021
  • The subject of navigation has drawn a large interest in the last few years. Navigation problem (or path planning) finds the path between two points, source location and destination location. In smart cities, solving navigation problem is essential to all residents and visitors of such cities to guide them to move easily between locations. Also, the navigation problem is very important in case of moving robots that move around the city or part of it to get some certain tasks done such as delivering packages, delivering food, etc. In either case, solution to the navigation is essential. The core to navigation systems is the navigation algorithms they employ. Navigation algorithms can be classified into navigation algorithms that depend on maps and navigation without the use of maps. The map contains all available routes and its directions. In this proposal, we consider the first class. In this paper, we are interested in getting path planning solutions very fast. In doing so, we employ a parallel platform, Reconfigurable mesh (R-Mesh), to compute the path from source location to destination location. R-Mesh is a parallel platform that has very fast solutions to many problems and can be deployed in moving vehicles and moving robots. This paper presents two algorithms for path planning. The first assumes maps with linear streets. The second considers maps with branching streets. In both algorithms, the quality of the path is evaluated in terms of the length of the path and the number of turns in the path.

Evaluation of platform switching and its clinical application (Platform switching(또는 Platform shifting) 개념 및 임상적용에 관한 고찰)

  • Yang, Byoung-Eun;Song, Sang-Hun;Kim, Seong-Gon
    • The Journal of the Korean dental association
    • /
    • v.45 no.9 s.460
    • /
    • pp.562-570
    • /
    • 2007
  • Many dentists and patients expect that implant function and esthetics will not change over time. However, even the most successful implant restorations with ideal position, vertical height, and occlusion can be aesthetically pleasing, but may hide a common problem. Many dentists noticed that there can be some circumferential bone loss around the neck of the implants. To circumvent this bone loss, a "platform switching" concept was introduced recently. The basic concept of platform switching is by moving the fixture-abutment interface further away from the crestal bone to minimize crestal bone loss. Since crestal bone loss is a multifactor problem, it is important to consider microgap formation and micromotion between the implant and abutment because platform switching does not solve the problem on its own. In this article, we reviewed studies concerning platform switching and discussed the clinical application and the problems that may occur with its use.

  • PDF

Design of a CubeSat test platform for the verification of small electric propulsion systems

  • Corpino, Sabrina;Stesina, Fabrizio;Saccoccia, Giorgio;Calvi, Daniele
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.427-442
    • /
    • 2019
  • Small satellites represent an emerging opportunity to realize a wide range of space missions at lower cost and faster delivery, compared to traditional spacecraft. However, small platforms, such as CubeSats, shall increase their actual capabilities. Miniaturized electric propulsion systems can provide the satellite with the key capability of moving in space. The level of readiness of miniaturized electric propulsion systems is low although many concepts have been developed. The present research intends to build a flexible test platform for the assessment of selected small propulsion systems in relevant environment at laboratory level. Main goal of the research is to analyze the mechanical, electrical, magnetic, and chemical interactions of propulsion systems with the modern CubeSat-technology and to assess the performance of the integrated platform. The test platform is a 6U CubeSat hosting electric propulsion systems, providing mechanical, electrical and data interfaces, able to handle a variety of electric propulsion systems, thanks to the ability to regulate and distribute electric power, to exchange data according to several protocols, and to provide different mechanical layouts. The test platform is ready to start the first verification campaign. The paper describes the detailed design of the platform and the main results of the AIV activities.

A study on the Hazard analysis and Improving methods for an Electrical shock on the Platform (전철 고상홈 전기통전 위험요인 분석 및 대책 연구)

  • Wang Jong-Bae;Cho Yuen-Oak
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.258-262
    • /
    • 2004
  • In this paper, the hazard factors on voltage rising effect between the rail and the earth were reviewed in subway system of AC traction line according to moving condition and location of the train. Site measuring of voltage rising between conductor part of train and station floor was performed to ascertain the risk level on the passenger. Plans for preventing hazard of rail-voltage rising and electrical shock on the passengers at platform were proposed.

  • PDF

Training of Equilibrium Sense Using Unstable Platform and Force Plate (Force Plate 와 불안정판을 이용한 평형감각 훈련)

  • 박용군;유미;권대규;홍철운;김남균
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.985-988
    • /
    • 2004
  • This paper proposes a new training system for equilibrium sense and postural control using unstable platform and force plate. This system consists of unstable platform, force plate, computer interface, software and the computer. Using this system and training programs, we perform the experiment to train the equilibrium sense and postural control of subject. To evaluate the effects of balance training, we measured some parameters such as the maintaining time in the target, the moving time to the target and the mean absolute deviation of the trace before and after training. The result shows that this system can improve the equilibrium sense and balance ability of subject. This study shows that proposed system had an effect on improving equilibrium sense and postural control and might be applied to clinical rehabilitation training as a new effective balance training system.

  • PDF

Kinematic analysis of a 6-degree-of-freedom micro-positioning parallel manipulator (6자유도를 갖는 정밀 위치제어용 병렬 매니퓰레이터의 기구학 해석)

  • 박주연;심재홍;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.213-216
    • /
    • 1996
  • This paper studies a class of in-parallel manipulators with special geometry where the forward displacement analysis problem can be solved easier than the fully parallel manipulators. Three horizontal links of this mechanism provide 3DOFs(Degrees of Freedom), which are one degree of orientational freedom and two degrees of translatory freedom. Three vertical links of this mechanism provide 3DOFs, which are two degrees of orientational freedom and one degree of translatory freedom. The main advantages of this manipulator, compared with the Stewart platform type, are the capability to produce pure rotation and to predict the motion of the moving platform easily. Since this manipulator has simple kinematic characteristics compared with the Stewart platform, controlling in real-time is possible due to less computational burden. The purpose of this investigation is to develope an analytical method and systematic method to analyze the basic kinematics of the manipulator. The basic kinematic equations of the manipulator are derived and simulation is carried out to show the performance of the mechanism.

  • PDF

A design of parallel mechanism to improve the workspace of platform (플랫폼의 운동성을 향상시킨 병렬 기구의 설계)

  • 유재명;최기훈;김영탁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1655-1658
    • /
    • 2003
  • The application area of parallel mechanism is limited in spite of many advantages of that because the workspace of platform is a very small. Thus enlargement of workspace is important issue in design of parallel mechanism. In this paper a parallel mechanism design method is described using commercial simulation program. Firstly strokes of the assembled parallel mechanism's active joints are simulated from kinetic simulation mode to get required workspace, Secondly, dynamic parameters(velocity, acceleration, force, moment) are simulated for the gravity, friction and exit load. Finally, workspace of moving platform is displayed and workspace of area is simulated by motion analysis. The results of this paper will help engineer to design parallel mechanism with optimize workspace.

  • PDF

Real-Time Forward Kinematics of the 6-6 Stewart Platform with One Extra Linear Sensor (한 개의 선형 여유센서를 갖는 스튜어트 플랫폼의 실시간 순기구학)

  • Lee, Tae-Young;Shim, Jae-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.541-547
    • /
    • 2000
  • This paper presents the closed-form forward kinematics of the 6-6 Stewart platform of planar base and moving platform. Based on algebraic elimination method and with one extra linear sensor, it first derives an 8th-degree univariate equation and then finds tentative solution sets out of which the actual solution is to be selected. In order to provide more exact solution despite the error between measured sensor value and the theoretical one, a correction method is also used. The overall procedure requires so little computation time that it can be efficiently used for realtime applications. In addition, unlike the iterative schemes e.g. Newton-Raphson, the algorithm does not require initial estimates of solution and is free of the problems that it does not converge to actual solution within limited time. The presented method has been implemented in C language and a numerical example is given to confirm the effectiveness and accuracy of the developed algorithm.

  • PDF

Experimental and Numerical Analyses of Unsteady Tunnel Flow in Subway Equiped with Platform Screen Door System (스크린도어가 설치된 지하철에서 열차운행에 의한 비정상유동의 실험 및 수치적 해석)

  • Kim Jung-Yup;Kim Kwang-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.103-111
    • /
    • 2006
  • To optimize the ventilation and smoke control systems in subway equipped with platform screen door, the technology to analyze the unsteady tunnel flow caused by running of train should be developed. The development of model experiment and numerical analysis technique with relation to unsteady flow of subway were presented. The pressure and air velocity changes in 1/20-scaling experiment unit were measured and results were comparied to those of 3-D unsteady numerical analysis applied with sharp interface method. The experimental and numerical results were quantitatively similar and it would be reasonable to apply sharp interface method to analyze the unsteady flow in subway equipped with platform screen door.