• 제목/요약/키워드: Moving Obstacle Avoidance

검색결과 108건 처리시간 0.021초

움직이는 장애물이 있을때 이동 로봇의 충돌 회피 알고리즘 (A Collision Avoidance Algorithm of a Mobile Robot in the Presence of Moving Obstacle)

  • 김선욱;권대갑;차영엽
    • 한국정밀공학회지
    • /
    • 제14권1호
    • /
    • pp.158-167
    • /
    • 1997
  • For the use of a mobile robot in dynamic environment, a collision-avoidance algorithm with moving obsta- cle is necessary. In this paper, a collsion-avoidance algorithm of a mobile robot is presented, when a mobile robot detects the collision with moving obstacle on the navigational path. Using reported positions of moving obstacle with sensors, the mobile robot predicts the next position of moving obstacle with possibility of collision. The velocity of moving obstacle is modeled as random walk process with Gaussian distribution. The optimal collision-avoidance path in which turning motion of the mobile robot is considered is generated with relative velocity between the mobile robot and moving obstacle. For the safety of collision-avoidance path, attractive potential with the safety factor is suggested. The simulation results using this algorithm show the mobile robot avoids collision with moving obstacle in many cases.

  • PDF

A new Approach to Moving Obstacle Avoidance Problem of a Mobile Robot

  • 고낙용
    • 한국생산제조학회지
    • /
    • 제7권1호
    • /
    • pp.9-21
    • /
    • 1998
  • This paper a new solution approach to moving obstacle avoidance problem of a mobile robot. A new concept avoidability measure (AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function (VDF), is derived as a function of the distance from the obstacle to the robot and outward speed of the obstacle relative to the robot. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terms of the VDF ,an artificial potential field is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived from the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid moving obstacles in real time. Since the algorithm considers the mobility of the obstacle as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

충돌 회피 가능도를 이용한 로봇의 이동 장애물 회피 (Moving obstacle avoidance of a robot using avoidability measure)

  • 고낙용;이범희
    • 제어로봇시스템학회논문지
    • /
    • 제3권2호
    • /
    • pp.169-178
    • /
    • 1997
  • This paper presents a new solution approach to moving obstacle avoidance problem of a robot. A new concept, avoidability measure(AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function(VDF) is derived as a function of three state variables: the distance from the obstacle to the robot, outward speed of the obstacle relative to the robot, and outward speed of the robot relative to the obstacle. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terms of the VDF, an artificial potential is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived from the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid a moving obstacle in real time. Since the algorithm considers the mobility of the obstacle and robot as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

동적 물체의 비전 검출을 통한 이동로봇의 장애물 회피 (Mobile Robot Obstacle Avoidance using Visual Detection of a Moving Object)

  • 김인권;송재복
    • 로봇학회논문지
    • /
    • 제3권3호
    • /
    • pp.212-218
    • /
    • 2008
  • Collision avoidance is a fundamental and important task of an autonomous mobile robot for safe navigation in real environments with high uncertainty. Obstacles are classified into static and dynamic obstacles. It is difficult to avoid dynamic obstacles because the positions of dynamic obstacles are likely to change at any time. This paper proposes a scheme for vision-based avoidance of dynamic obstacles. This approach extracts object candidates that can be considered moving objects based on the labeling algorithm using depth information. Then it detects moving objects among object candidates using motion vectors. In case the motion vectors are not extracted, it can still detect the moving objects stably through their color information. A robot avoids the dynamic obstacle using the dynamic window approach (DWA) with the object path estimated from the information of the detected obstacles. The DWA is a well known technique for reactive collision avoidance. This paper also proposes an algorithm which autonomously registers the obstacle color. Therefore, a robot can navigate more safely and efficiently with the proposed scheme.

  • PDF

Autonomous Navigation of an Underwater Robot in the Presence of Multiple Moving Obstacles

  • Kwon, Kyoung-Youb;Joh, Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.124-130
    • /
    • 2005
  • Obstacle avoidance of underwater robots based on a modified virtual force field algorithm is proposed in this paper. The VFF(Virtual Force Field) algorithm, which is widely used in the field of mobile robots, is modified for application to the obstacle avoidance of underwater robots. This Modified Virtual Force Field(MVFF) algorithm using the fuzzy lgoc can be used in moving obstacles avoidance. A fuzzy algorithm is devised to handle various situations which can be faced during autonomous navigation of underwater robots. The proposed obstacle avoidance algorithm has ability to handle multiple moving obstacles. Results of simulation show that the proposed algorithm can be efficiently applied to obstacle avoidance of the underwater robots.

이동 로봇의 지역 장애물 회피를 위한 새로운 방법 (A New Method for Local Obstacle Avoidance of a Mobile Robot)

  • 김성철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.88-93
    • /
    • 1998
  • This paper presents a new solution approach to moving obstacle avoidance problem for a mobile robot. A new concept avoidability measure(AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function(VDF) is derived as a function of the distance from the obstacle to the robot and outward speed of the obstacle relative to the robot. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terns of the VDF, an artificial potential field is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived form the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid moving obstacles in real time. Since the algorithm considers the mobility of the obstacle as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

네트워크 기반 자율 이동 로봇을 위한 시간지연 보상을 통한 새로운 동적 장애물 회피 알고리즘 개발 (Development of a New Moving Obstacle Avoidance Algorithm using a Delay-Time Compensation for a Network-based Autonomous Mobile Robot)

  • 김동선;오세권;김대원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1916-1917
    • /
    • 2011
  • A development of a new moving obstacle avoidance algorithm using a delay-time Compensation for a network-based autonomous mobile robot is proposed in this paper. The moving obstacle avoidance algorithm is based on a Kalman filter through moving obstacle estimation and a Bezier curve for path generation. And, the network-based mobile robot, that is a unified system composed of distributed environmental sensors, mobile actuators, and controller, is compensated by a network delay compensation algorithm for degradation performance by network delay. The network delay compensation method by a sensor fusion using the Kalman filter is proposed for the localization of the robot to compensate both the delay of readings of an odometry and the delay of reading of environmental sensors. Through some simulation tests, the performance enhancement of the proposed algorithm in the viewpoint of efficient path generation and accurate goal point is shown here.

  • PDF

충돌 벡터를 이용한 이동로봇의 동적 장애물 회피 (Dynamic Obstacle Avoidance of a Mobile Robot Using a Collision Vector)

  • 서대근;류은태;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.631-636
    • /
    • 2007
  • An efficient obstacle avoidance algorithm is proposed in this paper to avoid dynamic obstacles using a collision vector while a tele-operated mobile robot is moving. For the verification of the algorithm, an operator watches through a monitor and controls the mobile robot with a force-reflection joystick. The force-reflection joystick transmits a virtual force to the operator through the Inter-net, which is generated by an adaptive impedance algorithm. To keep the mobile robot safe from collisions in an uncertain environment, the adaptive impedance algorithm generates the virtual force which changes the command of the operator by pushing the operator's hand to a direction to avoid the obstacle. In the conventional virtual force algorithm, the avoidance of moving obstacles was not solved since the operator cannot recognize the environment realistically by the limited communication bandwidth and the narrow view-angle of the camera. To achieve the dynamic obstacle avoidance, the adaptive virtual force algorithm is proposed based on the collision vector that is a normal vector from the obstacle to the mobile robot. To verify the effectiveness of the proposed algorithm, mobile robot navigation experiments with multiple moving obstacles have been performed, and the results are demonstrated.

칼만 필터와 퍼지 알고리즘을 이용한 이동 장애물의 위치예측 및 회피에 관한 연구 (Prediction and Avoidance of the Moving Obstacles Using the Kalman Filters and Fuzzy Algorithm)

  • 정원상;최영규;이상혁
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권5호
    • /
    • pp.307-314
    • /
    • 2005
  • In this paper, we propose a predictive system for the avoidance of the moving obstacle. In the dynamic environment, robots should travel to the target point without collision with the moving obstacle. For this, we need the prediction of the position and velocity of the moving obstacle. So, we use the Kalman filer algorithm for the prediction. And for the application of the Kalman filter algorithm about the real time travel, we obtain the position of the obstacle which has the future time using Fuzzy system. Through the computer simulation studies, we show the effectiveness of the proposed navigational algorithm for autonomous mobile robots.

탑승자의 안전을 고려한 지능형 휠체어의 단일 이동 장애물 충돌회피 알고리즘 (Collision Avoidance Algorithm of an Intelligent Wheelchair Considering the User's Safety with a Moving Obstacle)

  • 김용휘;윤태성;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제19권10호
    • /
    • pp.936-940
    • /
    • 2013
  • As the ageing population grows around the world, the demand for electric wheelchairs, an important mobility assistance device for the disabled and elderly, is gradually increasing. Therefore, a number of studies related to intelligent wheelchairs are actively underway to improve safety and comfort for wheelchair users. However, previous collision avoidance studies for intelligent wheelchairs have concentrated on collision avoidance methods with the shortest distance and by only changing either velocity or heading angle, rather than considering the forces exerted on the user. If a collision avoidance algorithm that does not consider these forces is applied to an intelligent wheelchair, there is a possibility of an accident due to falling as wheelchair users are generally disabled and elderly people. In this paper, we propose a collision avoidance algorithm which minimizes the forces exerted on a wheelchair user by minimizing the variation of the wheelchair's velocity and heading angle when the sizes, positions, velocities, and heading angles of a wheelchair and a moving obstacle are known.