• 제목/요약/키워드: Moving Object Detection

검색결과 403건 처리시간 0.027초

Moving Object Segmentation을 활용한 자동차 이동 방향 추정 성능 개선 (Moving Object Segmentation-based Approach for Improving Car Heading Angle Estimation)

  • 노치윤;정상우;김유진;이경수;김아영
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.130-138
    • /
    • 2024
  • High-precision 3D Object Detection is a crucial component within autonomous driving systems, with far-reaching implications for subsequent tasks like multi-object tracking and path planning. In this paper, we propose a novel approach designed to enhance the performance of 3D Object Detection, especially in heading angle estimation by employing a moving object segmentation technique. Our method starts with extracting point-wise moving labels via a process of moving object segmentation. Subsequently, these labels are integrated into the LiDAR Pointcloud data and integrated data is used as inputs for 3D Object Detection. We conducted an extensive evaluation of our approach using the KITTI-road dataset and achieved notably superior performance, particularly in terms of AOS, a pivotal metric for assessing the precision of 3D Object Detection. Our findings not only underscore the positive impact of our proposed method on the advancement of detection performance in lidar-based 3D Object Detection methods, but also suggest substantial potential in augmenting the overall perception task capabilities of autonomous driving systems.

SURF와 Label Cluster를 이용한 이동형 카메라에서 동적물체 추출 (Moving Object Detection Using SURF and Label Cluster Update in Active Camera)

  • 정용한;박은수;이형호;왕덕창;허욱열;김학일
    • 제어로봇시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.35-41
    • /
    • 2012
  • This paper proposes a moving object detection algorithm for active camera system that can be applied to mobile robot and intelligent surveillance system. Most of moving object detection algorithms based on a stationary camera system. These algorithms used fixed surveillance system that does not consider the motion of the background or robot tracking system that track pre-learned object. Unlike the stationary camera system, the active camera system has a problem that is difficult to extract the moving object due to the error occurred by the movement of camera. In order to overcome this problem, the motion of the camera was compensated by using SURF and Pseudo Perspective model, and then the moving object is extracted efficiently using stochastic Label Cluster transport model. This method is possible to detect moving object because that minimizes effect of the background movement. Our approach proves robust and effective in terms of moving object detection in active camera system.

비디오 감시 시스템에서 실시간 움직이는 물체 검출 및 그림자 제거 (Real-Time Moving Object Detection and Shadow Removal in Video Surveillance System)

  • 이영숙;정완영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.574-578
    • /
    • 2009
  • 정지 영상이나 비디오 영상 시퀀스에서 배경 영상으로부터 움직이는 관심 물체를 구별하기 위한 실시간 물체 검출은 물체의 위치 추적과 인식에 있어 필수적인 단계이다. 물체 분할 후에 그림자 영역이 움직이는 물체 영역에 포함되어지기 때문에 그림자는 물체의 일부분 혹은 움직이는 물체로 오분류될 수 있다. 이러한 이유로 그림자 제거 알고리즘은 움직이는 물체 검출 및 추적 시스템의 결과에 중요한 역할을 한다. 이 문제점들을 해결하기 위해 본 논문에서는 움직이는 물체의 특징과 색상공간에서 그림자의 특징에 기반을 둔 정확한 물체 검출과 그림자 제거 알고리즘을 제안한다. 실험결과는 제안 알고리즘이 실험 영상에서 물체 검출과 그림자 제거에 대해 효과적인 것을 알 수가 있다.

  • PDF

Development of an Edge-Based Algorithm for Moving-Object Detection Using Background Modeling

  • Shin, Won-Yong;Kabir, M. Humayun;Hoque, M. Robiul;Yang, Sung-Hyun
    • Journal of information and communication convergence engineering
    • /
    • 제12권3호
    • /
    • pp.193-197
    • /
    • 2014
  • Edges are a robust feature for object detection. In this paper, we present an edge-based background modeling method for the detection of moving objects. The edges in the image frames were mapped using robust Canny edge detector. Two edge maps were created and combined to calculate the ultimate moving-edge map. By selecting all the edge pixels of the current frame above the defined threshold of the ultimate moving edges, a temporary background-edge map was created. If the frequencies of the temporary background edge pixels for several frames were above the threshold, then those edge pixels were treated as background edge pixels. We conducted a performance comparison with previous works. The existing edge-based moving-object detection algorithms pose some difficulty due to the changes in background motion, object shape, illumination variation, and noises. The result of the performance evaluation shows that the proposed algorithm can detect moving objects efficiently in real-world scenarios.

Moving Object Detection Using Sparse Approximation and Sparse Coding Migration

  • Li, Shufang;Hu, Zhengping;Zhao, Mengyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.2141-2155
    • /
    • 2020
  • In order to meet the requirements of background change, illumination variation, moving shadow interference and high accuracy in object detection of moving camera, and strive for real-time and high efficiency, this paper presents an object detection algorithm based on sparse approximation recursion and sparse coding migration in subspace. First, low-rank sparse decomposition is used to reduce the dimension of the data. Combining with dictionary sparse representation, the computational model is established by the recursive formula of sparse approximation with the video sequences taken as subspace sets. And the moving object is calculated by the background difference method, which effectively reduces the computational complexity and running time. According to the idea of sparse coding migration, the above operations are carried out in the down-sampling space to further reduce the requirements of computational complexity and memory storage, and this will be adapt to multi-scale target objects and overcome the impact of large anomaly areas. Finally, experiments are carried out on VDAO datasets containing 59 sets of videos. The experimental results show that the algorithm can detect moving object effectively in the moving camera with uniform speed, not only in terms of low computational complexity but also in terms of low storage requirements, so that our proposed algorithm is suitable for detection systems with high real-time requirements.

다중색상정규화와 움직임 색상정보를 이용한 물체검출 (Object Detection using Multiple Color Normalization and Moving Color Information)

  • 김상훈
    • 정보처리학회논문지B
    • /
    • 제12B권7호
    • /
    • pp.721-728
    • /
    • 2005
  • 본 논문에서는 영상 내 물체 영역에 대한 다중정규화와 움직임 색상 정보를 활용하여 이동 물체에 대한 후보 그룹을 추출하고 영상 분할 방법에 의해 대상 물체 영역을 정의하며 최종적으로 목표물체에 대한 검출방법을 제공하였다. 다중 색상변환에 의해 물체의 고유영역 확률을 강화하고 MCWUPC(Moving Color Weighted Unmatched Pixel Count) 연산을 활용하여 이동물체의 영역을 강조하는 두 가지 개념을 결합함으로써 최종적으로 입력 영상 시퀀스에서의 후보영역을 찾아 분할하였으며 매 프레임 정확한 물체의 외곽정보를 검출하였다. 제안된 알고리즘을 검증하기 위하여 이동물체의 이동 실시간이 가능한 시스템을 구축하였고, 다양한 배경을 포함한 실험영상 120 프레임을 처리한 결과 $89\%$ 이상의 추적 성공률을 보여주었다.

동적 배경에서의 고밀도 광류 기반 이동 객체 검출 (Dense Optical flow based Moving Object Detection at Dynamic Scenes)

  • 임효진;최연규;구엔 칵 쿵;정호열
    • 대한임베디드공학회논문지
    • /
    • 제11권5호
    • /
    • pp.277-285
    • /
    • 2016
  • Moving object detection system has been an emerging research field in various advanced driver assistance systems (ADAS) and surveillance system. In this paper, we propose two optical flow based moving object detection methods at dynamic scenes. Both proposed methods consist of three successive steps; pre-processing, foreground segmentation, and post-processing steps. Two proposed methods have the same pre-processing and post-processing steps, but different foreground segmentation step. Pre-processing calculates mainly optical flow map of which each pixel has the amplitude of motion vector. Dense optical flows are estimated by using Farneback technique, and the amplitude of the motion normalized into the range from 0 to 255 is assigned to each pixel of optical flow map. In the foreground segmentation step, moving object and background are classified by using the optical flow map. Here, we proposed two algorithms. One is Gaussian mixture model (GMM) based background subtraction, which is applied on optical map. Another is adaptive thresholding based foreground segmentation, which classifies each pixel into object and background by updating threshold value column by column. Through the simulations, we show that both optical flow based methods can achieve good enough object detection performances in dynamic scenes.

이동물체들의 Optical flow와 EMD 알고리즘을 이용한 식별과 Kalman 필터를 이용한 추적 (Detection using Optical Flow and EMD Algorithm and Tracking using Kalman Filter of Moving Objects)

  • 이정식;주영훈
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1047-1055
    • /
    • 2015
  • We proposes a method for improving the identification and tracking of the moving objects in intelligent video surveillance system. The proposed method consists of 3 parts: object detection, object recognition, and object tracking. First of all, we use a GMM(Gaussian Mixture Model) to eliminate the background, and extract the moving object. Next, we propose a labeling technique forrecognition of the moving object. and the method for identifying the recognized object by using the optical flow and EMD algorithm. Lastly, we proposes method to track the location of the identified moving object regions by using location information of moving objects and Kalman filter. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거 (An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance)

  • 응웬탄빈;정선태;조성원
    • 한국멀티미디어학회논문지
    • /
    • 제17권4호
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.

Realization for Moving Object Tracking System in Two Dimensional Plane using Stereo Line CCD

  • Kim, Young-Bin;Ryu, Kwang-Ryol;Sun, Min-Gui;Sclabassi, Robert
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.157-160
    • /
    • 2008
  • A realization for moving object detecting and tracking system in two dimensional plane using stereo line CCDs and lighting source is presented in this paper. Instead of processing camera images directly, two line CCD sensor and input line image is used to measure two dimensional distance by comparing the brightness on line CCDs. The algorithms are used the moving object tracking and coordinate converting method. To ensure the effective detection of moving path, a detection algorithm to evaluate the reliability of each measured distance is developed. The realized system results are that the performance of moving object recognizing shows 5mm resolution and mean error is 1.89%, and enables to track a moving path of object per 100ms period.

  • PDF