• Title/Summary/Keyword: Moving Detection

Search Result 1,073, Processing Time 0.024 seconds

A Method of Comparing Risk Similarities Based on Multimodal Data (멀티모달 데이터 기반 위험 발생 유사성 비교 방법)

  • Kwon, Eun-Jung;Shin, WonJae;Lee, Yong-Tae;Lee, Kyu-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.510-512
    • /
    • 2019
  • Recently, there have been growing requirements in the public safety sector to ensure safety through detection of hazardous situations or preemptive predictions. It is noteworthy that various sensor data can be analyzed and utilized as a result of mobile device's dissemination, and many advantages can be used in terms of safety and security. An effective modeling technique is needed to combine sensor data generated by smart-phones and wearable devices to analyze users' moving patterns and behavioral patterns, and to ensure public safety by fusing location-based crime risk data provided.

  • PDF

A Distributed Real-time Self-Diagnosis System for Processing Large Amounts of Log Data (대용량 로그 데이터 처리를 위한 분산 실시간 자가 진단 시스템)

  • Son, Siwoon;Kim, Dasol;Moon, Yang-Sae;Choi, Hyung-Jin
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.58-68
    • /
    • 2018
  • Distributed computing helps to efficiently store and process large data on a cluster of multiple machines. The performance of distributed computing is greatly influenced depending on the state of the servers constituting the distributed system. In this paper, we propose a self-diagnosis system that collects log data in a distributed system, detects anomalies and visualizes the results in real time. First, we divide the self-diagnosis process into five stages: collecting, delivering, analyzing, storing, and visualizing stages. Next, we design a real-time self-diagnosis system that meets the goals of real-time, scalability, and high availability. The proposed system is based on Apache Flume, Apache Kafka, and Apache Storm, which are representative real-time distributed techniques. In addition, we use simple but effective moving average and 3-sigma based anomaly detection technique to minimize the delay of log data processing during the self-diagnosis process. Through the results of this paper, we can construct a distributed real-time self-diagnosis solution that can diagnose server status in real time in a complicated distributed system.

A Basic Study on the Varying Thickness Detection of Steel Plate Using Ultrasonic Velocity Method (초음파 속도법을 활용한 강판의 두께 변화 탐지를 위한 기초연구)

  • Kim, WooSeok;Mun, Seongmo;Kim, Chulmin;Im, Seokbeen
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.146-152
    • /
    • 2020
  • This study was initiated to develop an effective inspection method to detect defects such as corrosion in closed-cell steel members in steel-box girder bridges. The ultrasonic velocity method among various non-destructive method was selected as a rapid and effective method to derive the average propagation velocity in the medium by using the ultrasonic wave velocity method for specimens of different thickness. The regression analysis was performed based on the experimental results, and the results was interpolated to evaluate the prediction accuracy. If the material properties are identical, this ultrasonic velocity method can predict the thickness using the averaged transmitted velocity. In addition, a continuous scanning method moving at 200 mm/s was tested for scanning a wide area of a bridge. The results exhibited that the continuous scanning method was able to effectively scan the different thickness of a bridge.

Algorithm for Judging Anomalies Using Sliding Window to Reproduce the Color Temperature Cycle of Natural Light (자연광의 색온도 주기 재현을 위한 슬라이딩 윈도우 기반 이상치 판정 알고리즘)

  • Jeon, Geon Woo;Oh, Seung Taek;Lim, Jae Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.1
    • /
    • pp.30-39
    • /
    • 2021
  • Research in the field of health lighting has continued to advance to reproduce the color temperature of natural light which periodically changes. However, most of this research could only reproduce a uniform circadian color temperature of natural light, therefore failing to realize the characteristics of the circadian cycle of color temperature difference by latitude and longitude. To reproduce the color temperature of natural light on which the characteristics of a region are reflected, the collection technology of real-time characteristics of natural light is needed. If the color temperatures which are not within a periodical pattern due to climate changes, etc., are measured, it will be difficult to judge the occurrence (presence) of the anomalies and to reproduce the circadian cycle of the color temperature of natural light. Therefore, this study proposes an algorithm for judging the anomalies in real time based on the sliding window to reproduce the color temperature of natural light. First, the natural light characteristics DB collected through the on-site measurement were analyzed, the differential values at a one-minute interval were calculated and examined, and then representative color temperature circadian patterns by solar terms were drawn. The anomalies were then detected by the application of the sliding window that calculated the deviation of the color temperature for the measured color temperature data set, which was collected through RGB sensors, while moving along the time sequence. In addition, the presence of anomalies was verified through the comparison study between the detection results and the representative circadian cycle of the color temperature by solar term. The judgment method for the anomalies from the measured color temperature of natural light was proposed for the first time, confirming that the proposed method was capable of detecting the anomalies with an average accuracy of 94.6%.

Pedestrian path search based on the shortest distance algorithm using Map API (Map API를 활용한 최단 거리 알고리즘 기반 보행자 경로 탐색 연구)

  • Sungwoo, Jeon;Bokseon, Kang;Youngha, Park;Heo-kyung, Jung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.117-123
    • /
    • 2023
  • There are casualties due to inundation and flooding due to intensive typhoons or heavy rains in summer. Due to such damage, the biggest disaster is flood, and in order to reduce human damage, this paper proposes a shortest distance algorithm-based pedestrian path search study using Map API. This system selects Map API through comparative analysis and provides the shortest route. The route explored is in JSON format and the data of the shelter is stored in the database. The route search system designed and implemented based on this data locates pedestrians and provides evacuation routes in case of flash floods. In addition, if the route cannot be entered while moving to the evacuation route, the current location of the pedestrian is identified, the route is re-searched, and a new route is provided. Therefore, it is believed that the pedestrian route search system proposed in this paper will prevent negligent accidents.

On-line Magnetic Resonance Quality Evaluation Sensor

  • Kim, Seong-Min;McCarthy, Michael J.;Chen, Pictiaw;Zion, Boaz
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.314-324
    • /
    • 1996
  • A high speed NMR quality evaluation sensor was designed , constructed and tested . The device consists of an NMR spectrometer coupled to a conveyor system. The conveyor was run at speeds ranging from 0 to 250 mm/s. Spectral of avocado fruits and one-dimensional magnetic resonance images of pickled olives were acquired while the samples were moving on a conveyor belt mounted through a 20Tesla NMR magnet with a 20 mm diameter surface coil and a 150 mm diameter imaging coil respectively. Fro a magnetic resonance spectrum analysis, motion through variations in the magnetic field tends to narrow spectral line width just like using sample rotation in high resolution NMR to narrow spectral line width. Spectrum analysis was used to detect the dry weight of avocado fruits using the ratio oil and water resonance peaks. Good correlations maximum r=0.970@ 50 mm/s and minimum r=0.894@250mm/s ) between oil and water resonance peak ratio and dry weight of avocados were observed at speeds ra ging from0 to 250mm/s. For the application of magnetic resonance imaging (MRI) method, the projections were used to distinguish between pitted and non-pitted olives . Effect of fruit position in the coil was tested and coil degree effects were noticed when projects were generated under dynamic conditions. Various belt speeds (up to 250mm/s) were tested and detection results were compared to static measurements. Higher classification errors were occurred at dynamic conditions compared to errors while olives were at rest.

  • PDF

Circumstellar Clumps in the Cassiopeia A Supernova Remnant: Prepared to be Shocked

  • Koo, Bon-Chul;Kim, Hyun-Jeong;Oh, Heeyoung;Raymond, John C.;Yoon, Sung-Chul;Lee, Yong-Hyun;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.43.1-43.1
    • /
    • 2020
  • Cassiopeia A (Cas A) is a young supernova remnant (SNR) where we observe the interaction of SNR blast wave with circumstellar medium. From the early optical studies, dense, slowly-moving, N-rich "quasi-stationary flocculi" (QSF) have been known. These are probably dense CNO-processed circumstellar knots that have been engulfed by the SNR blast wave. We have carried out near-infrared, high-resolution (R=45,000) spectroscopic observations of ~40 QSF, and here we present the result on a QSF knot (hereafter 'Knot 24') near the SNR boundary of Cas A. The average [Fe II] 1.644 um spectrum of Knot 24 has a remarkable shape with a narrow (~8 km/s) line superposed on the broad (~200 km/s) line emitted from shocked gas. The spatial morphology and the line parameters indicate that Knot 24 has been partially destroyed by a shock wave and that the narrow line is emitted from the unshocked material heated/ionized by the shock radiation. This is the first detection of the emission from the pristine circumstellar material of the Cas A supernova progenitor. We also detected H Br gamma and other [Fe II] lines corresponding to the narrow [Fe II] 1.644 um line. For the main clump where we can clearly identify the shock emission associated with the unshocked material, we analyze the observed line ratios using a shock model that includes radiative precursor. The analysis indicates that the majority of Fe in the unshocked material is in the gas phase, not depleted onto dust grains as in the general interstellar medium. We discuss the non-depletion of Fe in QSF and its implications on the immediate progenitor of the Cas A supernova.

  • PDF

Stress Level Based Emotion Classification Using Hybrid Deep Learning Algorithm

  • Sivasankaran Pichandi;Gomathy Balasubramanian;Venkatesh Chakrapani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3099-3120
    • /
    • 2023
  • The present fast-moving era brings a serious stress issue that affects elders and youngsters. Everyone has undergone stress factors at least once in their lifetime. Stress is more among youngsters as they are new to the working environment. whereas the stress factors for elders affect the individual and overall performance in an organization. Electroencephalogram (EEG) based stress level classification is one of the widely used methodologies for stress detection. However, the signal processing methods evolved so far have limitations as most of the stress classification models compute the stress level in a predefined environment to detect individual stress factors. Specifically, machine learning based stress classification models requires additional algorithm for feature extraction which increases the computation cost. Also due to the limited feature learning characteristics of machine learning algorithms, the classification performance reduces and inaccurate sometimes. It is evident from numerous research works that deep learning models outperforms machine learning techniques. Thus, to classify all the emotions based on stress level in this research work a hybrid deep learning algorithm is presented. Compared to conventional deep learning models, hybrid models outperforms in feature handing. Better feature extraction and selection can be made through deep learning models. Adding machine learning classifiers in deep learning architecture will enhance the classification performances. Thus, a hybrid convolutional neural network model was presented which extracts the features using CNN and classifies them through machine learning support vector machine. Simulation analysis of benchmark datasets demonstrates the proposed model performances. Finally, existing methods are comparatively analyzed to demonstrate the better performance of the proposed model as a result of the proposed hybrid combination.

From Machine Learning Algorithms to Superior Customer Experience: Business Implications of Machine Learning-Driven Data Analytics in the Hospitality Industry

  • Egor Cherenkov;Vlad Benga;Minwoo Lee;Neil Nandwani;Kenan Raguin;Marie Clementine Sueur;Guohao Sun
    • Journal of Smart Tourism
    • /
    • v.4 no.2
    • /
    • pp.5-14
    • /
    • 2024
  • This study explores the transformative potential of machine learning (ML) and ML-driven data analytics in the hospitality industry. It provides a comprehensive overview of this emerging method, from explaining ML's origins to introducing the evolution of ML-driven data analytics in the hospitality industry. The present study emphasizes the shift embodied in ML, moving from explicit programming towards a self-learning, adaptive approach refined over time through big data. Meanwhile, social media analytics has progressed from simplistic metrics deriving nuanced qualitative insights into consumer behavior as an industry-specific example. Additionally, this study explores innovative applications of these innovative technologies in the hospitality sector, whether in demand forecasting, personalized marketing, predictive maintenance, etc. The study also emphasizes the integration of ML and social media analytics, discussing the implications like enhanced customer personalization, real-time decision-making capabilities, optimized marketing campaigns, and improved fraud detection. In conclusion, ML-driven hospitality data analytics have become indispensable in the strategic and operation machinery of contemporary hospitality businesses. It projects these technologies' continued significance in propelling data-centric advancements across the industry.

Optimization of Image Tracking Algorithm Used in 4D Radiation Therapy (4차원 방사선 치료시 영상 추적기술의 최적화)

  • Park, Jong-In;Shin, Eun-Hyuk;Han, Young-Yih;Park, Hee-Chul;Lee, Jai-Ki;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • In order to develop a Patient respiratory management system includinga biofeedback function for4-dimentional radiation therapy, this study investigated anoptimal tracking algorithmfor moving target using IR (Infra-red) camera as well as commercial camera. A tracking system was developed by LabVIEW 2010. Motion phantom images were acquired using a camera (IR or commercial). After image process were conducted to convert acquired image to binary image by applying a threshold values, several edge enhance methods such as Sobel, Prewitt, Differentiation, Sigma, Gradient, Roberts, were applied. The targetpattern was defined in the images, and acquired image from a moving targetwas tracked by matching pre-defined tracking pattern. During the matching of imagee, thecoordinateof tracking point was recorded. In order to assess the performance of tracking algorithm, the value of score which represents theaccuracy of pattern matching was defined. To compare the algorithm objectively, we repeat experiments 3 times for 5 minuts for each algorithm. Average valueand standard deviations (SD) of score were automatically calculatedsaved as ASCII format. Score of threshold only was 706, and standard deviation was 84. The value of average and SD for other algorithms which combined edge detection method and thresholdwere 794, 64 in Sobel, 770, 101 in Differentiation, 754, 85 in Gradient, 763, 75 in Prewitt, 777, 93 in Roberts, and 822, 62 in Sigma, respectively. According to score analysis, the most efficient tracking algorithm is the Sigma method. Therefore, 4-dimentional radiation threapy is expected tobemore efficient if threshold and Sigma edge detection method are used together in target tracking.