This research is about set-up own posture standard and enables to compare the set-up and own posture; therefore, this posture training system leads the user's active learning through the method of self-directed learning. This system includes the camera part that shoots user's posture and save the movie clip for comparison about the user and target, the training server that provides a comparison screen playing clips simultaneously by user's input, and the terminal equipment that connects the training server and a network, transmits the user's input to the server, and displays them from the comparison screen. The Journal of Digital Policy & Management. This space is for the abstract of your study in English.
Shin, Noo Ri;Kim, TaeHyeon;Yun, Dai Yeol;Moon, Seok-Jae;Hwang, Chi-gon
International Journal of Advanced Culture Technology
/
v.9
no.2
/
pp.86-90
/
2021
Sentiment refers to a person's thoughts, opinions, and feelings toward an object. Sentiment analysis is a process of collecting opinions on a specific target and classifying them according to their emotions, and applies to opinion mining that analyzes product reviews and reviews on the web. Companies and users can grasp the opinions of public opinion and come up with a way to do so. Recently, natural language processing models using the Transformer structure have appeared, and Google's BERT is a representative example. Afterwards, various models came out by remodeling the BERT. Among them, the Facebook AI team unveiled the XLM-R (XLM-RoBERTa), an upgraded XLM model. XLM-R solved the data limitation and the curse of multilinguality by training XLM with 2TB or more refined CC (CommonCrawl), not Wikipedia data. This model showed that the multilingual model has similar performance to the single language model when it is trained by adjusting the size of the model and the data required for training. Therefore, in this paper, we study the improvement of Korean sentiment analysis performed using a pre-trained XLM-R model that solved curse of multilinguality and improved performance.
Journal of the Korean Institute of Educational Facilities
/
v.5
no.2
/
pp.16-29
/
1998
Bell Laboratory introduced the sound and visual system for the first time in 1927. Since then, the development of telecommunication technology made it possible for people located far away to communicate each other watching through the TV screen. Over the period different types of telelecturing systems have prospered in line with the development of telecommunication technology. Therefore, it is quite natural that telelecturing/conferending system attracts the attention of many people as a new way of educating people located in a long distance. In the industrial sector, telelecturing systems already come into wide use to save time and training and travelling expense. In this study, I examine the concept and characteristics of telelecturing/conferencing system and introduce different types telelecturing system developed in parallel with the development of communication technology. Then, I analyze how those merits of the telelecturing system can be applied to educational purpose. Finally, I propose and design ideal telelectuirng/conference facilities consisting of telelecturing rooms, bilateral movie system, seats, ceilings, color, TV screen, lighting, acoustics, humidities and temperature control, security system, projection system to maximize the educational purpose and effectiveness.
With the development of the Internet, users share their experiences and opinions. Since related keywords are used witho0ut considering information such as the general emotion or genre of an unstructured document such as a movie review, the sensitivity accuracy according to the appropriate emotional situation is impaired. Therefore, we propose a system that predicts emotions based on information such as the genre to which the unstructured document created by users belongs or overall emotions. First, representative keyword related to emotion sets such as Joy, Anger, Fear, and Sadness are extracted from the unstructured document, and the normalized weights of the emotional feature words and information of the unstructured document are trained in a system that combines CNN and LSTM as a training set. Finally, by testing the refined words extracted through movie information, morpheme analyzer and n-gram, emoticons, and emojis, it was shown that the accuracy of emotion prediction using emotions and F-measure were improved. The proposed prediction system can predict sentiment appropriately according to the situation by avoiding the error of judging negative due to the use of sad words in sad movies and scary words in horror movies.
The number and variety of products and services offered by companies have increased dramatically, providing customers with more choices to meet their needs. As a solution to this information overload problem, the provision of tailored services to individuals has become increasingly important, and the personalized recommender systems have been widely studied and used in both academia and industry. Existing recommender systems face important problems in practical applications. The most important problem is that it cannot clearly explain why it recommends these products. In recent years, some researchers have found that the explanation of recommender systems may be very useful. As a result, users are generally increasing conversion rates, satisfaction, and trust in the recommender system if it is explained why those particular items are recommended. Therefore, this study presents a methodology of providing an explanatory function of a recommender system using a review text left by a user. The basic idea is not to use all of the user's reviews, but to provide them in a summarized form using only reviews left by similar users or neighbors involved in recommending the item as an explanation when providing the recommended item to the user. To achieve this research goal, this study aims to provide a product recommendation list using user-based collaborative filtering techniques, combine reviews left by neighboring users with each product to build a model that combines text summary methods among deep learning-based natural language processing methods. Using the IMDb movie database, text reviews of all target user neighbors' movies are collected and summarized to present descriptions of recommended movies. There are several text summary methods, but this study aims to evaluate whether the review summary is well performed by training the Sequence-to-sequence+attention model, which is a representative generation summary method, and the BertSum model, which is an extraction summary model.
This study was conducted to develop and evaluate food safety training program for employees in foodservice operations. The developed CD-ROM was consisted of 5 parts: foodbome illness, personal hygiene, food handling in food production steps, HACCP system, and sanitary facilities. It has made slides for all contents, the animation and movie to raise interests and concentrations, and illustrations and pictures to understand. The evaluation checklists were developed 15 questionnaires including understanding(5), information(3), concentration(4), recommendation(2), and the most important factor(1) and measured by Likert 5-point scale. Fifty-four dietitians in Daegu and Gyeongbuk schools, hospitals, and industries foodservice operations responded to the surveys. The results are as follows; The most important part in the CD-ROM was personal hygiene(33.3%). The total mean was $3.95{\pm}0.41,\;3.91{\pm}0.46$ on understanding, $3.89{\pm}0.50$ on information, $3.87{\pm}0.55$ on concentration and $4.29{\pm}0.49$ on recommendation. The score was significantly higher in the recommendation part than others. Overall, as the developed CD-ROM has achieved fine score, a study on the effect of education needs to be followed. Moreover, consistent and organized education by developing a variety of sanitation education methods should be conducted.
Journal of Korea Entertainment Industry Association
/
v.13
no.7
/
pp.135-143
/
2019
This study analyzes the present condition and the environment of the university education centered on the practice in the film field and suggests the effective development plan for the new or improved practice. Recently, as a new breakthrough in infant education in the rapidly declining educational environment, the introduction of arts education, on-site self-study, and practice-centered laboratory exercises are increasing students' satisfaction. However, compared to trend, our practical education and creative education programs are lacking in reality. In this study, we analyze and study the effective development method of education through researching the satisfaction pattern and the education program of the students who are the center of the production practice shown in the movie image production, and building the paradigm, I would like to suggest a direction for the production education.
Users in social media post various types of opinions such as product reviews and movie reviews. It is a common trend that customers get assistance from the opinions in making their decisions. However, as opinion usage grows, distorted feedbacks also have increased. For example, exaggerated positive opinions are posted for promoting target products. So are negative opinions which are far from common evaluations. Finding these biased opinions becomes important to keep social media reliable. Techniques of opinion mining (or sentiment analysis) have been developed to determine sentiment polarity of opinionated documents. These techniques can be utilized for finding the biased opinions. However, the previous techniques have some drawback. They categorize the text into only positive and negative, and they also need a large amount of training data to build the classifier. In this paper, we propose methods for discovering the biased opinions which are skewed from the overall common opinions. The methods are based on angle based outlier detection and personalized PageRank, which can be applied without training data. We analyze the performance of the proposed techniques by presenting experimental results on a movie review dataset.
Journal of Korea Society of Industrial Information Systems
/
v.28
no.5
/
pp.15-30
/
2023
Recently, generative models based on the Transformer architecture, such as ChatGPT, have been gaining significant attention. The Transformer architecture has been applied to various neural network models, including Google's BERT(Bidirectional Encoder Representations from Transformers) sentence generation model. In this paper, a method is proposed to create a text binary classification model for determining whether a comment on Korean movie review is positive or negative. To accomplish this, a pre-trained multilingual BERT sentence generation model is fine-tuned and transfer learned using a new Korean training dataset. To achieve this, a pre-trained BERT-Base model for multilingual sentence generation with 104 languages, 12 layers, 768 hidden, 12 attention heads, and 110M parameters is used. To change the pre-trained BERT-Base model into a text classification model, the input and output layers were fine-tuned, resulting in the creation of a new model with 178 million parameters. Using the fine-tuned model, with a maximum word count of 128, a batch size of 16, and 5 epochs, transfer learning is conducted with 10,000 training data and 5,000 testing data. A text sentiment binary classification model for Korean movie review with an accuracy of 0.9582, a loss of 0.1177, and an F1 score of 0.81 has been created. As a result of performing transfer learning with a dataset five times larger, a model with an accuracy of 0.9562, a loss of 0.1202, and an F1 score of 0.86 has been generated.
Due to the growth of internet data and the rapid development of internet technology, "big data" analysis is actively conducted to analyze enormous data for various purposes. Especially in recent years, a number of studies have been performed on the applications of text mining techniques in order to overcome the limitations of existing structured data analysis. Various studies on sentiment analysis, the part of text mining techniques, are actively studied to score opinions based on the distribution of polarity of words in documents. Usually, the sentiment analysis uses sentiment dictionary contains positivity and negativity of vocabularies. As a part of such studies, this study tries to construct sentiment dictionary which is customized to specific data domain. Using a common sentiment dictionary for sentiment analysis without considering data domain characteristic cannot reflect contextual expression only used in the specific data domain. So, we can expect using a modified sentiment dictionary customized to data domain can lead the improvement of sentiment analysis efficiency. Therefore, this study aims to suggest a way to construct customized dictionary to reflect characteristics of data domain. Especially, in this study, movie review data are divided by genre and construct genre-customized dictionaries. The performance of customized dictionary in sentiment analysis is compared with a common sentiment dictionary. In this study, IMDb data are chosen as the subject of analysis, and movie reviews are categorized by genre. Six genres in IMDb, 'action', 'animation', 'comedy', 'drama', 'horror', and 'sci-fi' are selected. Five highest ranking movies and five lowest ranking movies per genre are selected as training data set and two years' movie data from 2012 September 2012 to June 2014 are collected as test data set. Using SO-PMI (Semantic Orientation from Point-wise Mutual Information) technique, we build customized sentiment dictionary per genre and compare prediction accuracy on review rating. As a result of the analysis, the prediction using customized dictionaries improves prediction accuracy. The performance improvement is 2.82% in overall and is statistical significant. Especially, the customized dictionary on 'sci-fi' leads the highest accuracy improvement among six genres. Even though this study shows the usefulness of customized dictionaries in sentiment analysis, further studies are required to generalize the results. In this study, we only consider adjectives as additional terms in customized sentiment dictionary. Other part of text such as verb and adverb can be considered to improve sentiment analysis performance. Also, we need to apply customized sentiment dictionary to other domain such as product reviews.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.