• 제목/요약/키워드: Movie Information

검색결과 585건 처리시간 0.048초

웹 서비스 기반의 영화 컨텐츠 검색 시스템 개발 (A Development of A Movie Contents Retrieval System based on Web Service)

  • 곽길신;주경수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.571-574
    • /
    • 2004
  • 디지털화 된 멀티미디어 데이터가 증가함에 따라 데이터의 효과적인 분류 및 검색 작업이 더욱 중요해 지고 있으며, 네트워크와 하드웨어의 발전으로 영상 정보를 검색함에 있어 기존의 웹상의 클라이언트/서버 기반 검색만으로는 부족하게 되었다. 이에 따라 영상 정보를 웹상에서 뿐만 아니라 모바일 같은 이기종간의 검색이 필요하다. 그러나 이기종 간의 플랫폼에서 동일한 정보를 얻기 위해서는 상호운용성에 문제가 있다. 웹 서비스(Web Service)는 분산 애플리케이션에 대한 언어-중립적(language-neutral)과 벤더-중립적(vendor-neutral)[5]을 제시하고 있어 기존의 서로 다른 플랫폼간의 정보 이전 문제를 해결할 수 있다. 따라서 본 논문에서는 영화 컨텐츠 검색 시스템을 웹 서비스화 하였다.

  • PDF

신경망 기반 협력적 여과의 성능 향상을 위한 연구 (A Study on Collaborative filtering Based on Neural Network for Increment Performance)

  • 김은주;류정우;김명원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (상)
    • /
    • pp.309-312
    • /
    • 2003
  • 추천 시스템을 위한 여과 기술에는 협력적 여과, 내용기반 여과 등이 있다. 협력적 여과 방법은 적용이 용이한 반면 회소성 문제와 초기 평가 문제가 있으며, 내용기반 여과는 정보의 질을 구분하는 것이 어려워 효과가 적다는 단점이 있다. 신경망 기반 협력적 여과 방법은 이러한 문제를 해결하고 있지만, 사용자의 수가 많아지면 모델이 커져 효율성이 떨어지는 문제가 있다. 본 논문에서는 신경망 기반 협력적 여과의 효율성을 높이기 위해 상관도를 고려하는 신경망 기반 협력적 여과를 제안한다. 여기서 상관도란 피어슨 상관계수를 이용하여 구해진 상관계수의 절대값을 의미하며 상관도가 높다라는 것은 상관계수의 절대값이 1에 가까운 경우를 말한다. 본 논문에서는 EachMovie 데이터를 이용하여 제안한 방법의 우수함을 보인다.

  • PDF

협업 필터링 개선을 위한 베이지안 모형 개발 (Simple Bayesian Model for Improvement of Collaborative Filtering)

  • 이영찬
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.232-239
    • /
    • 2005
  • Collaborative-filtering-enabled Web sites that recommend books, CDs, movies, and so on, have become very popular on the Internet. Such sites recommend items to a user on the basis of the opinions of other users with similar tastes. This paper discuss an approach to collaborative filtering based on the Simple Bayesian and apply this model to two variants of the collaborative filtering. One is user-based collaborative filtering, which makes predictions based on the users' similarities. The other is item-based collaborative filtering which makes predictions based on the items' similarities. To evaluate the proposed algorithms, this paper used a database of movie recommendations. Empirical results show that the proposed Bayesian approaches outperform typical correlation-based collaborative filtering algorithms.

  • PDF

3D 영화제작을 위한 얼굴윤곽의 에지검출 (The Facial Edge Detection in Creating a Stereoscopic 3D Movie)

  • 신설;하성수;최성진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.1011-1013
    • /
    • 2014
  • 2D/3D 입체영상의 변환을 위해 산업현장에서 아티스트가 경험적으로 양자화된 깊이 정보를 제작하고, 입력된 깊이 정보의 차이와 픽셀 간의 유사성을 이용하여 물체의 윤곽을 보존하는 한편, 실시간으로 평활화 과정을 수행하는 방법을 제안한다. 아티스트의 의도를 반영하기 위해 초기 입력한 깊이 정보를 바탕으로 적응적인 스무딩 파라미터를 할당함으로써 기존의 수작업을 반자동화하였다. 제안된 방법에서는 기존 방법의 평활화 단계에서 Domain Transformation 기법을 적용하고, 노이즈 제거 단계에서 양방향 필터를 적용하였다. 즉 산업 현장에서 문제점들을 해결하도록 알고리즘을 변형하여 기존 알고리즘의 성능을 개선하였다. 실험 결과는 제안된 방법이 기존의 제작 방법과 비교하여 적은 양자화 단계로 동일한 성능을 내는 것을 확인하였다.

개인 리뷰를 통한 영화추천 시스템 (A Movie Recommendation System using Individual Review)

  • 김채린;박주현;두추월;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.1081-1084
    • /
    • 2014
  • 최근 들어, 많은 추천시스템들이 연구 되고 있으며, 대부분은 개인 맞춤형 추천 시스템이 연구되고 있다. 기존의 영화추천시스템에서는 희박성의 문제가 제기된다. 본 논문에서는 희박성에 대해 보안하고자, 개인리뷰에 대한 가중치를 활용한다. 그 결과 사용자에게 정보의 제공에 대해 효율성을 높이고, 사용자마다 영화에 대한 리뷰에 따른 감정 및 사용자의 정보들을 반영한 영화추천시스템을 설계 및 구현한다.

단어 패턴 빈도를 이용한 한국어 영화평 자동 분류기법 (Automatic Classification of Korean Movie Reviews Using a Word Pattern Frequency)

  • 장재영;김정민;이신영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(C)
    • /
    • pp.51-53
    • /
    • 2012
  • 데이터 마이닝의 문서분류 기술에서 발전된 오피니언 마이닝은 이제 국외뿐만 아니라 국내의 학계 및 기업에서 중요한 관심분야로 자리잡아가고 있다. 오피니언 마이닝의 핵심은 문서에서 감정 단어를 추출하여 긍정/부정 여부를 얼마나 정확하게 자동적으로 판별하느냐를 평가하는 것이다. 국내에서도 이에 관련된 많은 연구가 이루어 졌으나 아직 실용적으로 적용할 만큼의 정확한 분류 정확도 보이지 않고 있다. 그 이유는 한국어의 경우 비문법적 표현, 감정단어의 다양성 등으로 인해 문서의 극성을 판별하기가 쉽지 않기 때문이다. 본 논문에서는 문법적 요소를 최대한 배제하고 단어 패턴의 빈도만을 고려한 영화평 분류기법을 제안한다. 제안된 방법에서는 문서를 단어들의 리스트로 추상화하여 패턴들의 빈도로 학습한 후 적절한 스코어 함수를 적용하여 문서의 극성을 판별한다. 또한 실험을 통해 제안된 기법의 정확도를 평가한다.

협업필터링과 리뷰 기반의 영화추천시스템 (A Movie Recommendation System based on Collaborative filtering and review)

  • 박주현;김민기;김민정;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.294-296
    • /
    • 2015
  • 최근 들어, 영화에 대한 많은 추천시스템이 제안 되고 있는데, 나이와 장르, 성별에 관한 협업필터링 추천 방식을 주로 사용했다. 협업필터링 방법에 좀 더 정확한 추천을 하기 위해서 본 논문에서는 기존의 협업필터링 방식에 더해서 사용자의 리뷰에서 인간의 '감정'을 장르에 편입시켜 좀 더 사용자에게 정확하고 명확하게 추천하는 영화추천시스템을 제안한다.

개인 리뷰를 이용한 영화추천 시스템 (A Movie Recommendation System using Individual Review and Meta Data)

  • 김민정;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 추계학술발표대회
    • /
    • pp.1611-1614
    • /
    • 2015
  • 최근 많은 추천 시스템들이 연구 되고 있으며, 사용자들에게 의사결정을 도와주는 추천시스템에 대한 중요도가 급증하고 있다. 기존의 영화 추천시스템에서는 희박성의 문제가 제기된다. 본 논문에서는 이러한 문제를 보완하고자 사용자가 영화에 대해 남긴 리뷰로부터 영화키워드를 분석하고 분석된 키워드로부터 가중치를 활용한다. 즉 사용자들로부터 영화에 대한 리뷰를 수집하고 리뷰로부터 각 영화 키워드를 분석해 키워드별 가중치를 활용해 이를 기반으로 영화를 추천한다. 그 결과 사용자에게 만족할만한 정보를 제공해 효율성을 높이고, 영화에 대한 개인 리뷰를 반영한 영화추천 시스템을 설계 및 구현해 사용자에게 적절한 영화를 추천한다.

영화 등장인물의 사회관계망에서 중요도를 기반으로 하는 주연 등장인물 검출 기법 (Leading Characters Determation Based on Centrality in Movie Characters' Social Networks)

  • 허주성;서장원;김태형;이예영;한연희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2015년도 춘계학술발표대회
    • /
    • pp.716-719
    • /
    • 2015
  • '영화 속에 등장하는 주연들은 어떤 기준으로 선정되는가'에서 본 논문에서는 두 가지 방법을 활용하여 주연들을 추출해보았다. 그 결과 가중치 연결 중심도를 이용한 검출 방법이 공식적인 주연급 등장인물과 일치한다는 것을 도출해냄.

개인화 영화 추천 시스템 성능 평가와 개선에 관한 연구 (A Study on the Performance Evaluation and Improvement of Personalized Movie Recommendation System)

  • 김세준;정운해;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.1691-1693
    • /
    • 2012
  • 협업필터링은 추천 시스템 중에서 가장 일반적으로 사용되는 추천 시스템이다. 영화 추천 시스템에서도 이 방법을 가장 많이 사용한다. 추천 시스템에서 가장 많이 사용되고 있는 방법이지만 이 기법만을 적용할 경우 희박성, 확장성 그리고 투명성 등의 문제점을 가진다. 이러한 문제점들을 개선해 보려는 노력들이 많이 연구되어 왔다. 본 논문에서는 개인들의 특징인 개인 성향과 협업 필터링을 기반으로한 영화 추천 시스템을 제시하고 기존의 영화추천 시스템과 성능 평가한다.