디지털화 된 멀티미디어 데이터가 증가함에 따라 데이터의 효과적인 분류 및 검색 작업이 더욱 중요해 지고 있으며, 네트워크와 하드웨어의 발전으로 영상 정보를 검색함에 있어 기존의 웹상의 클라이언트/서버 기반 검색만으로는 부족하게 되었다. 이에 따라 영상 정보를 웹상에서 뿐만 아니라 모바일 같은 이기종간의 검색이 필요하다. 그러나 이기종 간의 플랫폼에서 동일한 정보를 얻기 위해서는 상호운용성에 문제가 있다. 웹 서비스(Web Service)는 분산 애플리케이션에 대한 언어-중립적(language-neutral)과 벤더-중립적(vendor-neutral)[5]을 제시하고 있어 기존의 서로 다른 플랫폼간의 정보 이전 문제를 해결할 수 있다. 따라서 본 논문에서는 영화 컨텐츠 검색 시스템을 웹 서비스화 하였다.
추천 시스템을 위한 여과 기술에는 협력적 여과, 내용기반 여과 등이 있다. 협력적 여과 방법은 적용이 용이한 반면 회소성 문제와 초기 평가 문제가 있으며, 내용기반 여과는 정보의 질을 구분하는 것이 어려워 효과가 적다는 단점이 있다. 신경망 기반 협력적 여과 방법은 이러한 문제를 해결하고 있지만, 사용자의 수가 많아지면 모델이 커져 효율성이 떨어지는 문제가 있다. 본 논문에서는 신경망 기반 협력적 여과의 효율성을 높이기 위해 상관도를 고려하는 신경망 기반 협력적 여과를 제안한다. 여기서 상관도란 피어슨 상관계수를 이용하여 구해진 상관계수의 절대값을 의미하며 상관도가 높다라는 것은 상관계수의 절대값이 1에 가까운 경우를 말한다. 본 논문에서는 EachMovie 데이터를 이용하여 제안한 방법의 우수함을 보인다.
Collaborative-filtering-enabled Web sites that recommend books, CDs, movies, and so on, have become very popular on the Internet. Such sites recommend items to a user on the basis of the opinions of other users with similar tastes. This paper discuss an approach to collaborative filtering based on the Simple Bayesian and apply this model to two variants of the collaborative filtering. One is user-based collaborative filtering, which makes predictions based on the users' similarities. The other is item-based collaborative filtering which makes predictions based on the items' similarities. To evaluate the proposed algorithms, this paper used a database of movie recommendations. Empirical results show that the proposed Bayesian approaches outperform typical correlation-based collaborative filtering algorithms.
2D/3D 입체영상의 변환을 위해 산업현장에서 아티스트가 경험적으로 양자화된 깊이 정보를 제작하고, 입력된 깊이 정보의 차이와 픽셀 간의 유사성을 이용하여 물체의 윤곽을 보존하는 한편, 실시간으로 평활화 과정을 수행하는 방법을 제안한다. 아티스트의 의도를 반영하기 위해 초기 입력한 깊이 정보를 바탕으로 적응적인 스무딩 파라미터를 할당함으로써 기존의 수작업을 반자동화하였다. 제안된 방법에서는 기존 방법의 평활화 단계에서 Domain Transformation 기법을 적용하고, 노이즈 제거 단계에서 양방향 필터를 적용하였다. 즉 산업 현장에서 문제점들을 해결하도록 알고리즘을 변형하여 기존 알고리즘의 성능을 개선하였다. 실험 결과는 제안된 방법이 기존의 제작 방법과 비교하여 적은 양자화 단계로 동일한 성능을 내는 것을 확인하였다.
최근 들어, 많은 추천시스템들이 연구 되고 있으며, 대부분은 개인 맞춤형 추천 시스템이 연구되고 있다. 기존의 영화추천시스템에서는 희박성의 문제가 제기된다. 본 논문에서는 희박성에 대해 보안하고자, 개인리뷰에 대한 가중치를 활용한다. 그 결과 사용자에게 정보의 제공에 대해 효율성을 높이고, 사용자마다 영화에 대한 리뷰에 따른 감정 및 사용자의 정보들을 반영한 영화추천시스템을 설계 및 구현한다.
데이터 마이닝의 문서분류 기술에서 발전된 오피니언 마이닝은 이제 국외뿐만 아니라 국내의 학계 및 기업에서 중요한 관심분야로 자리잡아가고 있다. 오피니언 마이닝의 핵심은 문서에서 감정 단어를 추출하여 긍정/부정 여부를 얼마나 정확하게 자동적으로 판별하느냐를 평가하는 것이다. 국내에서도 이에 관련된 많은 연구가 이루어 졌으나 아직 실용적으로 적용할 만큼의 정확한 분류 정확도 보이지 않고 있다. 그 이유는 한국어의 경우 비문법적 표현, 감정단어의 다양성 등으로 인해 문서의 극성을 판별하기가 쉽지 않기 때문이다. 본 논문에서는 문법적 요소를 최대한 배제하고 단어 패턴의 빈도만을 고려한 영화평 분류기법을 제안한다. 제안된 방법에서는 문서를 단어들의 리스트로 추상화하여 패턴들의 빈도로 학습한 후 적절한 스코어 함수를 적용하여 문서의 극성을 판별한다. 또한 실험을 통해 제안된 기법의 정확도를 평가한다.
최근 들어, 영화에 대한 많은 추천시스템이 제안 되고 있는데, 나이와 장르, 성별에 관한 협업필터링 추천 방식을 주로 사용했다. 협업필터링 방법에 좀 더 정확한 추천을 하기 위해서 본 논문에서는 기존의 협업필터링 방식에 더해서 사용자의 리뷰에서 인간의 '감정'을 장르에 편입시켜 좀 더 사용자에게 정확하고 명확하게 추천하는 영화추천시스템을 제안한다.
최근 많은 추천 시스템들이 연구 되고 있으며, 사용자들에게 의사결정을 도와주는 추천시스템에 대한 중요도가 급증하고 있다. 기존의 영화 추천시스템에서는 희박성의 문제가 제기된다. 본 논문에서는 이러한 문제를 보완하고자 사용자가 영화에 대해 남긴 리뷰로부터 영화키워드를 분석하고 분석된 키워드로부터 가중치를 활용한다. 즉 사용자들로부터 영화에 대한 리뷰를 수집하고 리뷰로부터 각 영화 키워드를 분석해 키워드별 가중치를 활용해 이를 기반으로 영화를 추천한다. 그 결과 사용자에게 만족할만한 정보를 제공해 효율성을 높이고, 영화에 대한 개인 리뷰를 반영한 영화추천 시스템을 설계 및 구현해 사용자에게 적절한 영화를 추천한다.
협업필터링은 추천 시스템 중에서 가장 일반적으로 사용되는 추천 시스템이다. 영화 추천 시스템에서도 이 방법을 가장 많이 사용한다. 추천 시스템에서 가장 많이 사용되고 있는 방법이지만 이 기법만을 적용할 경우 희박성, 확장성 그리고 투명성 등의 문제점을 가진다. 이러한 문제점들을 개선해 보려는 노력들이 많이 연구되어 왔다. 본 논문에서는 개인들의 특징인 개인 성향과 협업 필터링을 기반으로한 영화 추천 시스템을 제시하고 기존의 영화추천 시스템과 성능 평가한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.