• Title/Summary/Keyword: Movement shock

Search Result 83, Processing Time 0.036 seconds

An Effect Analysis of Rearfoot Movement and Impact force by Different Design of Running Shoes Hardness (런닝화의 경도 차이가 후족 제어 및 충격력에 미치는 영향 분석)

  • Lee Dong-Choon;Lee Woo-Chang
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.291-296
    • /
    • 2002
  • The midsole hardness of athletic footwear affects capability of absorbing impact shock and controls rearfoot movement during running and walking. The prior studies were focused on examining the proper hardness of footwear for rearfoot movement or to finding effective hardness for absorbing impact shock. The displacements of maximal Achilles tendon angle described a amount of pronation motion is decreased when medial hardness of midsole is large more than lateral. Increasing hardness of footwear midsole are effected to reduce maximum and intial pronation angle, but declined the ability of impact shock during heelstrike. For determination of effectiveness hardness of midsole, therefore, the study that makes a compromise between rearfoot movement and absorbing impact during footstrike must be performed. The purpose of this study is to examine quantitative values of rearfoot control and absorbing impact shock with different hardness of medial and lateral midsole on heel portion. The results are useful to define biomechanical hardness of midsole for developing running shoes. As variable for impact shock, accelerations onto shank and knee are measured during 4 running speeds (5, 7, 9, 11km/h). Also, maximum and $10\%$ pronation angle (Achilles tendon angle) were measured using high-speed camera.

  • PDF

Analysis of the Structural Robustness of Cabinet Structure Equipped with Military Vehicles (군용 차량 탑재 캐비닛 구조물의 구조건전성 분석)

  • Son, Dong-Hun;Kang, Kwang-Hee;Choi, Ji-Ho;Park, Do-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.273-276
    • /
    • 2014
  • The development of a vehicle-mounted radar to detect the location of enemy artillery is mainly mounted during operation to the mobility of the equipment and efficiency of utilization range. It is equipped with an electronic device responsible for the operation of the radar system. Electronic equipments is performed functionality imparted without an error-specific in spite of disturbances such as vibration / shock caused by vehicle movement. Therefore, vibration / shock resistance is held to prevent damaging from vibration / shock generated from the outside environment during operation. In addition, a standardized and specified cabinet structure equipped with electronic equipment is placed in shelter to ensure additional safety for vibration / shock. In this study, it is evaluated by analytical method with vibration / shock resistance of the cabinet structures for ensuring structural safety factor is applied to the aluminum. It is verified the reliability of the structure and structural dynamics to verify by calculated natural frequencies adding the weight of the cabinet structure and the structural displacement and stress results confirmed with vibration / shock caused by the vehicle movement.

  • PDF

Analytical and Experimental Studies on the design of Electromagnetic Shock Absorber (전자기식 충격흡수구조의 설계를 위한 동특성 해석 및 실험)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk;Im, Jae-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • A shock absorber with magnetic effects is suggested for a lunar space-ship expected to launch in 2025. The device consists of a copper steel combined tube, two magnets, and a piston. The piston is designed to move a magnet through the tube when it is pushed by an external impact. While the magnet is moving in the tube, it generates the eddy current force with the copper part of the tube and it also makes the large friction force with the steel part of the tube. Beside, it gets resistive forces against its movement such as the magnetic force with a steel-ring at the first time of the movement and the repulsive force with a same pole opposed magnet at the end time of the movement. In this thesis, results of analyses and experiments of each force are represented and the expected performance of the electromagnetic shock absorber is drawn from the results.

Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube

  • Arun, Kumar R.;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.

Effects of Running Speed on Body Impact Acceleration and Biomechanical Variables (달리기 속도의 변화가 인체 충격 가속도와 생체역학적 변인에 미치는 영향)

  • Young-Seong Lee;Jae-Won Kang;Sang-Kyoon Park
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.2
    • /
    • pp.81-92
    • /
    • 2024
  • Objective: The purpose of this study was to analyze the impact acceleration, shock attenuation and biomechanical variables at various running speed. Method: 20 subjects (height: 176.15 ± 0.63 cm, weight: 70.95 ± 9.77 kg, age: 27.00 ± 4.65 yrs.) participated in this study. The subjects ran at four different speeds (2.5 m/s, 3.0 m/s, 3.5 m/s, 4.0 m/s). Three-dimensional accelerometers were attached to the distal tibia, sternum and head. Gait parameters, biomechanical variables (lower extremity joint angle, moment, power and ground reaction force) and acceleration variables (impact acceleration, shock attenuation) were calculated during the stance phase of the running. Repeated measures ANOVA was used with an alpha level of .05. Results: In gait parameters, decreased stance time, increasing stride length and stride frequency with increasing running speed. And at swing time 2.5 m/s and 4.0 m/s was decreased compared to 3.0 m/s and 3.5 m/s. Biomechanical variables statistically increased with increasing running speed except knee joint ROM, maximum ankle dorsiflexion moment, and maximum hip flexion moment. In acceleration variables as the running speed increased (2.5 m/s to 4.0 m/s), the impact acceleration on the distal tibia increased by more than twice, while the sternum and head increased by approximately 1.1 and 1.2 times, respectively. And shock attenuation (tibia to head) increased as the running speed increased. Conclusion: When running speed increases, the magnitude and increasing rate of sternum and head acceleration are lower compared to the proximal tibia, while shock attenuation increases. This suggests that limiting trunk movement and increasing lower limb movement effectively reduce impact from increased shock. However, to fully understand the body's mechanism for reducing shock, further studies are needed with accelerometers attached to more segments to examine their relationship with kinematic variables.

Effects of Extracorporeal Shock Wave Therapy with Myofascial Release Techniques on Pain, Movement, and Function in Patients with Myofascial Pain Syndrome (근막통증 증후군 환자에게 체외충격파와 근막이완술 병행 치료가 통증, 움직임, 기능에 미치는 영향)

  • Choi, Won-Jae;Nam, Eun-Jung;Kim, Hyun-Joong;Lee, Seung-Won
    • PNF and Movement
    • /
    • v.18 no.2
    • /
    • pp.245-254
    • /
    • 2020
  • Purpose: The study investigated the effects of extracorporeal shock wave therapy with myofascial release techniques (ESWT+MFR) on pain, movement, and function in patients with myofascial pain syndrome. Methods: Forty participants with upper trapezius trigger points were recruited and randomly allocated to two groups: an experimental group (n = 20) and a control group (n = 20). The experimental group performed the ESWT+MFR, and the control group performed only myofascial release techniques. Each group was treated for 15 minutes, twice a week for four weeks. Pain was assessed using a visual analogue scale and a pressure pain threshold measure. Movement was assessed by cervical range of motion, and cervical and shoulder function were assessed on the Constant-Murley Scale and the Neck Disability Index before and after treatment. Results: The results indicate statistically significant improvements in the two groups on all parameters after intervention as compared to baseline (p < 0.05). As compared to the control group, the experimental group showed statistically significant improvements on the visual analogue scale and pressure pain threshold, cervical range of motion (except rotation), and on the Neck Disability Index (p < 0.05). Conclusion: The ESWT+MFR is more effective than myofascial release techniques for pain, movement, and function in patients with myofascial pain syndrome and would be clinically useful for physical therapists treating myofascial pain syndrome.

Shock Test Signal Analysis using Wavelets (웨이블렛을 이용한 충격신호분석)

  • 안호일
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.147-154
    • /
    • 2001
  • The underwater explosion shock test is performed for the evaluation of the shock-resistant capability which is a very critical factor considering the survivability of the battle ship. Some measured signals have impulsive noise and gaussian white noise because of the unstable power supply system and the transient movement of cables during the underwater explosion shock test. The advanced shock signal analysis method which remove the noise of measured signal using the threshold policy of the median filter and the orthogonal wavelet coefficients are proposed. It is verified that the signal-to-noise ratio was improved about 30㏈ by the numerical simulation.

  • PDF

A study on the stroke sensitive shock absorber (변위 감응형 충격흡수기에 관한 연구)

  • Park, Jae-Woo;Joo, Dong-Woo;Kim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.11-16
    • /
    • 1997
  • In the stroke sensitive shock absorber, the oil path is formed along the internal cylinder surface to make the oil flow during the piston's upper-lower reciprocation movement. In constrast with the conventional shock absorbesr which show one dynamic characteristic curve, stroke sensitive shock absorber shows two kinds of dynamic characteristics according to the stroke. In this study, in order to obtain more precise information about design and damping performance analysis, the analysis on the damping force generation process and dynamic behaviour characteristics of stroke sensitive shock absorber are performed by considering the valve characteristics.

  • PDF

A Study on the control system for the Unintended Car Movement Protection Means to meet the International Standards of lifts

  • Choi, Youngkiu;Lee, Hochul
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2079-2087
    • /
    • 2017
  • As the number of tall buildings is increasing, the high-speed lift is necessary in the modern world. Therefore, the further considerations for associated safety devices of lifts were required by the International Standards. In order to stop the moving of cage and keep it, the lifts have to be provided with means that can detect the unintended car movement. Therefore, the International Standard Safety Rules for the construction and installation of lifts had been revised. This paper describes the operation principles of the Rope Brake to fit the Unintended Car Movement Protection (UCMP) means required by the International Standards. This paper confirmed that the performance of these devices was suitable in the scope of the safety standards. This paper also analyzed that the shocks on working of these devices in a car would be dangerous to each passenger differently. Thus, this paper proposes a new design that the circuit diagram of the Unintended Car Movement Protection systems should be improved from the existing design to solve these internal shock problems. So, it is expected to protect passengers from the internal shocks by working of Rope Brake due to irrelevant factors.

A Study on the Stroke Sensitive Shock Absorber (변위 감응형 충격흡수기에 관한 연구)

  • 박재우;주동우;김영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.85-90
    • /
    • 1997
  • In the stroke sensitive shock absorber, the oil path is formed along the internal cylinder surface to make the eli flow during piston's upper-lower reciprocation movement. With constraint to the conventional shock absorbers which show one dynamic characteristic curve, stroke sensitive shock absorber shows two kins of dynamic characteristic according to the stroke, In the study, analysis on the damping force generation process and dynamic behaviour characteristics of stroke sensitive shock absorber is performed, the valve characteristics being considered more precise information about design and damping performance analysis.

  • PDF