• Title/Summary/Keyword: Mouse oocytes

Search Result 280, Processing Time 0.029 seconds

Studies on the In Chamber Fertilization in Cattle and Rabbit (소 및 가토에 있어서 Chember내 수정에 관한 연구)

  • 김명철
    • Journal of Embryo Transfer
    • /
    • v.4 no.1
    • /
    • pp.21-27
    • /
    • 1989
  • Hydrogel chambers made from polymerized 2-hydroxyethyl methacrylate were used for in chamber fertilization. To determine whether sperm motility was preserved in the Hydrogel chamber, chambers which have rabbit sperm or frozen-thawed bovine sperm were transplanted inside of mouse peritoneal cavity and sperm were observed after recovering the chambers in the due time. As a result, it was determined that preservation of sperm motility was good. To determine whether in chamber fertilization was possible, chambers which have rabbit oocytes and sperm were transplanted inside of mouse peritoneal cavity and eggs were observed after recovering the chambers at 84 hr of preservation. As a result, the fact that fertilization and culture was occurred inside of the chamber was determined.

  • PDF

Development Rates of the Cryopreserved Mouse Embryos According to the Embryonic Stage and Cryopreservation Method (생쥐 초기배아의 발생시기와 냉동보존 방법에 따른 발생률)

  • Cheon, Yong-Pil;Lee, Ho-Jun;Kim, Moon-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.21 no.3
    • /
    • pp.325-330
    • /
    • 1994
  • The study has been carried out in order to evaluate the effects of embryonic stage, and cryopreservation method on the rates of viability and development of the cryopreserved mouse early embryos. The results were as following:In the treatment steps of cryoprotectant, for the fertilized oocyte with pronucleus(PN), 2-step was better than the others. And for the other embryos, 4-step was better than 2- or 3-step. In respect to the embryonic stage, as the embryos developed from fertilized oocytes to 8-cell embryos, the rates of viability and development were increased higher. Therefore, 8-cell embryo was better stage than the others. In respect to the kind of cryoprotectants, PROH was better than DMSO for the fertilized oocyte, as a cryoprotectant. DMSO, for the 2-cell embryos and PROH and DMSO for the 4- and 8-cell embryos were suitable for cryopreservation.

  • PDF

Effect Of Cocaine Administration on the Development of Mouse Embryos

  • Kim, Soo-Hee;Yang, Boo-Keun;Kim, Hyoung-Chun;Jhoo, Wang-Kee
    • Archives of Pharmacal Research
    • /
    • v.17 no.4
    • /
    • pp.209-212
    • /
    • 1994
  • Mophological normal of unfertilized oocytes, which was collected 12-14 hours after human Chorionic Gonadotropin(jCG) injection, was not influenced by chronically adiministration of cocaine for 2 weeks in mice. Proportion of normal unfertilized oocytes in non-cocaine treated group (control), `0 mg/kg and 20 mg/kg cocaine treated group based on body weight with subcutaneous(s.c.) daily injection of cocaine for 2 weeks were 92.9%, 85.6% and 90.9%, respectively. There is no significant difference between control and cocaine treated groups. Two to 8 cell stage embryos collected 24-48 hours post hCG in control group were 66.7%, whereas, 10 mg/kg and 20 mg/kg groups treated with cocaine was 12.5% and 27.3% respectively. Although control and treated groups are significantly different (p<0.05) the developmental score of 2 to 8 cell stage embryos collected at 24-48 hours post HCG, there is no difference between 10 mg/kg and 20 mg/kg treated with cocaine groups. These results indicated that the normal embryos of the roups of cocaine administration were significantly amested when compared with that of control group. The proportion of 2 to 8 cell stage embryo reaching the blastocyst stage, which were cultured 48-52 hours with 5% $Co_2$ in air at $37^{\circ}C$, were 93.9% in control group and, 70.4% and 71.9% in each 10 mg/kg and to blastocyst in vitro culture was significantly limited embryos obtained from cocanized mice compared with those of control mice. These results suggest that episode of cocaine intoxication can cause impaiment of early embrygenesis in the mouse.

  • PDF

Changes in gene expression associated with oocyte meiosis after $Obox4$ RNAi

  • Lee, Hyun-Seo;Kim, Eun-Young;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.2
    • /
    • pp.68-74
    • /
    • 2011
  • Objective: Previously, we found that oocyte specific homeobox (Obox) 4 plays significant role in completion of meiosis specifically at meiosis I-meiosis II (MI-MII) transition. The purpose of this study was to determine the mechanism of action of $Obox4$ in oocyte maturation by evaluating downstream signal networking. Methods: The $Obox4$ dsRNA was prepared by $in$ $vitro$ transcription and microinjected into the cytoplasm of germinal vesicle oocytes followed by $in$ $vitro$ maturation in the presence or absence of 0.2 mM 3-isobutyl-1-metyl-xanthine. Total RNA was extracted from 200 oocytes of each group using a PicoPure RNA isolation kit then amplified two-rounds. The probe hybridization and data analysis were used by Affymetrix Gene-Chip$^{(R)}$ Mouse Genome 430 2.0 array and GenPlex 3.0 (ISTECH, Korea) software, respectively. Results: Total 424 genes were up (n=80) and down (n=344) regulated after $Obox4$ RNA interference (RNAi). Genes mainly related to metabolic pathways and mitogen-activated protein kinase (MAPK) signaling pathway was changed. Among the protein kinase C (PKC) isoforms, PKC-alpha, beta, gamma were down-regulated and especially the MAPK signaling pathway PKC-gamma was dramatically decreased by $Obox4$ RNAi. In the cell cycle pathway, we evaluated the expression of genes involved in regulation of chromosome separation, and found that these genes were down-regulated. It may cause the aberrant chromosome segregation during MI-MII transition. Conclusion: From the results of this study, it is concluded that $Obox4$ is important upstream regulator of the PKC and anaphase-promoting complex action for maintaining intact germinal vesicle.

Action of Protein Kinase A and C Activators on Germinal Vesicle Breakdown and One-Cell Embryos in the Mouse (생쥐 GV난자와 1-세포기 배아의 핵막붕괴에 미치는 Protein Kinase A와 C의 작용)

  • 이대기;김경진;조완규
    • The Korean Journal of Zoology
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 1989
  • Expedments were perfonned to examine the role of cAMP-dependent protein kinase (PK-A) and diacylglycerol-dependent protein kinase (PK-C) during the meiodc resumption and the first mitotic cell cycle of mouse embryogenesis. Mejoric GV oocytes and one-cell embryos derived from in vitro fertilization were cultured in vitro, and morphological changes in response to activators of PK-A and PK-C were examined. Treatments with a membrane-permeable cAMP analog, dbcAMP (0.1 mg/mi), phosphodiesterase inhibitor, IBMX (0.1 mM), biologically active phorbol ester, WA (10 nglmi), or a synthetic diacylglycerol, sn-diC8 inhibited resumption of melosis. Combination of PK-A and PK-C activator brought about furiher inhibition. On the contrary, dbcAMP (0.1 mg/mi), IBMX (0.2 mM), WA (10 nglml), and sn-diC8 (0.5 mM) did not inhibit pronucleus membrane breakdown (PNBD) when added S or G2 phase of cell cycle. However, activators of PK-C inhibited cleavage of one-cefl embryos. This result indicates that the action mechanism of PK-A and PK-C on dissolution of nuclear membrane in primary meiotic arrest oocytes may be different from that of mitotic one-cell embryos.

  • PDF

Fasudil Increases the Establishment of Somatic Cell Nuclear Transfer Embryonic Stem Cells in Mouse

  • So, Seongjun;Karagozlu, Mustafa Zafer;Lee, Yeonmi;Kang, Eunju
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • Somatic cell nuclear transfer derived embryonic stem cells (NT-ESCs) have significant advantages in various fields such as genetics, embryology, stem cell science, and regenerative medicine. However, the poor establishment of NT-ESCs hinders various research. Here, we applied fasudil, a Rho-associated kinase (ROCK) inhibitor, to develop somatic cell nuclear transfer (SCNT) embryos and establish NT-ESCs. In the study, MII oocytes were isolated from female B6D2F1 mice and performed SCNT with mouse embryonic fibroblasts (MEFs). The reconstructed NT-oocytes were activated artificially, and cultured to blastocysts in KSOM supplemented with 10 μM fasudil. Further, the blastocysts were seeded on inactivated MEFs in embryonic stem cell medium supplemented with 10 μM fasudil. A total of 26% of embryos formed into blastocysts in the fasudil treated group, while this ratio was 44% in the fasudil free control group. On the other hand, 30% of blastocysts were established NT-ESCs after exposure of fasudil, which was significantly higher than the control group (10%). The results suggest that fasudil reduced blastocyst development after SCNT due to inhibition of 2 cell cleavage while improved the establishment of NT-ESCs through the anti-apoptotic pathway.

A Study of Alkaline Phosphatase Activity on the Preimplantation Mouse Embryos (초기 흰쥐 배아의 발생단계에 있어서의 Alkaline Phosphatase의 활성에 관한 연구)

  • Cho, Wan-Kyoo;Lee, Chung-Choo;Kim, Hee-Kwon
    • The Korean Journal of Zoology
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 1984
  • In order to investigate the alkaline phosphtase activities in the mouse oocytes in matuation and preimplantation embryos in developing in culture, the enzyme activities were measured by means of biochemical method. The in vitro effect of levamisole which is known as an inhibitor of the lakaline phosphatase was also observed on the oocyte in maturation and the embryos in early embryogenesis. The results obtained were as follows: The enzyme activity was not detected in the embryos unitl the stage of 4-cell, but it appeared first in the 4-cell embryos and the level of the activity was steady through up to the blastocyst. Levamisole inhibited the alkaline phosphatase activity in the blastocyst, and the activity decreased by almost 70% at 10 mM and 50% at 1 mM as compared with the control. In addition, levamisole inhibited completely the formation of polar body by the oocytes. and induced degeneration of the preimplantation embryos at the dose of 0.5 mM or higher.

  • PDF

Effects of astaxanthin supplementation in fertilization medium and/or culture medium on the fertilization and development of mouse oocytes

  • Tana, Chonthicha;Somsak, Pareeya;Piromlertamorn, Waraporn;Sanmee, Usanee
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.1
    • /
    • pp.26-32
    • /
    • 2022
  • Objective: We investigated the effect of supplementing fertilization medium and/or culture medium with astaxanthin (AST) on the two phases of in vitro fertilization: gamete fertilization and embryo development. Methods: Mouse cumulus-oocyte complexes were divided into four groups with 5 µM AST added to the fertilization medium (group 3, n=300), culture medium (group 2, n=300), or both media (group 4, n=290). No AST was added to the control group (group 1, n=300). Results: The fertilization rate was significantly higher (p<0.001) in the groups using AST supplemented fertilization medium (group 3, 79.0%; group 4, 81.4%) than those without AST (group 1, 56.3%; group 2, 52.3%). The blastocyst rate calculated from the two-cell stage was significantly lower (p<0.001) in the groups using AST-supplemented embryo culture medium (group 2, 58.0%; group 4, 62.3%) than in those without AST (group 1, 82.8%; group 3, 79.8%). The blastocyst rate calculated from the number of inseminated oocytes was highest in group 3 (189/300, 63.0%) and lowest in group 2 (91/300, 30.3%) with statistical significance compared to other groups (p<0.001). There were significantly higher numbers of cells in the inner cell mass and trophectoderm, as well as significantly higher total blastocyst cell counts, in group 3 than in the control group. Conclusion: An increased blastocyst formation rate and high-quality blastocysts were found only in the fertilization medium that had been supplemented with AST. In contrast, AST supplementation of the embryo culture medium was found to impair embryo development.

Downstream Genes Regulated by Bcl2l10 RNAi in the Mouse Oocytes

  • Kim, Eun-Ah;Kim, Kyeoung-Hwa;Lee, Hyun-Seo;Lee, Su-Yeon;Kim, Eun-Young;Seo, You-Mi;Bae, Jee-Hyeon;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Previously, we have shown that Bcl2l10 as a member of Bcl-2 family, key regulators of the apoptotic process, is dominantly expressed in oocytes of ovary but several member of the Bcl-2 family are not expressed in oocytes. Recent our studies had been processed about roles and regulatory mechanisms of Bcl2l10 in oocytes. Microinjection of Bcl2l10 RNAi into the cytoplasm of germinal vesicle oocytes resulted in metaphase I (MI) arrest and exhibited abnormalities in their spindles and chromosome configurations (Yoon et al., 2009). The present study was conducted to elucidate the downstream genes regulated by Bcl2l10 and signaling networks in Bcl2l10 RNAi microinjected oocytes by using microarray analysis. Surprisingly, we found that a large proportion of genes regulated by Bcl2l10 RNAi were involved in the cell cycle and actin skeletal system regulation as important upstream genes of Bcl2l10. Among the transcripts with highly significant fold changes more than 2-fold, Tpx2 and Cep192 are 16.1- and 8.2-fold down regulated respectively by Bcl2l10 RNAi. Tpx2 and Cep192 are known as cofactors that control Aurora A kinase activity and localization. Therefore, we concluded that Bcl2l10 may have important roles during oocyte meiosis as functional upstream regulator of Tpx2 and Cep192.

Effect of Thymeleatoxin on Mouse Oocyte Maturation (마우스 난 성숙과정에서의 Thymeleatoxin의 영향)

  • Lim E. A.;Shin J. H.;Choi T. S.
    • Reproductive and Developmental Biology
    • /
    • v.28 no.3
    • /
    • pp.187-190
    • /
    • 2004
  • Protein kinase C exists as a family of serine/threonine kinases which are broadly classified into three groups as cPKC nPKC and aPKC depending on their cofactor requirements. Previous studies have shown that the role of PKC in the process of mouse oocyte maturation. For example, phorbol 12-myristate 13-acetate which is known as an activator of cPKC and nPKC inhibits germinal vesicle break down and 1st polar body extrusion in maturing oocytes. In this study, the effect of thymeleatoxin, a specific activator of cPKC not nPKC, was tested comparing with PMA to address the roles of cPKC and nPKC during mouse oocyte maturation. Cumulus-oocyte complex were cultured in M16 medium for 6 or 12 hr with each of these PKC activators to investigate the effect of germinal vesicle breakdown (GVBD) or the extrusion of 1st polar body. IC/sup 50/ of GVBD were at concentrations of 50nM in PMA and 400nM in thymeleatoxin and of 1st polar body extrusion were 20nM in PMA and 200nM in thy- meleatoxin. The results suggest that activation of nPKC is more closely related to the inhibition of GVBD and 1st polar body extrusion than activation of cPKC. Additionally, we found that the oocytes inhibited 1st polar body extrusion with PMA or thymeleatoxin were arrested in metaphase I of first meiosis.