• Title/Summary/Keyword: Mouse lymphoma assay

Search Result 45, Processing Time 0.02 seconds

In vitro Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Forward Mutation Assay in Mammalian cells (포유동물세포의 Forward Mutation을 지표로 한 Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Assay)

  • 류재천;김경란;최윤정
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 1999
  • The mouse lymphoma thymidine kinase (tk+/-) gene assay (MOLY) using L5178Y tk+/- mouse lymphoma cell line is one of the mammalian forward mutation assays. It is well known that MOLY has many advantages and more sensitive than the other mammalian forward mutation assays such as x-linked hyposanthine phosphoribosyltransferase (hprt) gene assay. The target gene of MOLY is a heterozygous tk+/- gene located in 11 chromosome of L5178Y tk+/- cell, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. MOLY has relatively short expression time (2-3 days) compared to 1 week of hprt gene assay. MOLY can also induce relatively high mutant frequency so a large number of events can be recorded. The bimodal distribution of colony size which may indicate gene mutation and chromosome breakage potential of chemicals according to mutation scale such as large normal-growing mutants and small slow-growing mutants can be observed in this assay. The statistical analysis of data can be performed using the MUTANT program developed by York Electronic Research in association with Hazelton as recommended by the UKEMS (United Kingdom Environmental Mutagen Society) guidelines. This report reviewed MOLY using the microtiter cloning technique (microwell assay).

Evaluation of the Genetic Toxicity of Synthetic Chemical (XVIII)-in vitro Mouse Lymphoma Assay and in vivo Supravital Micronucleus Assay with Butylated Hydroxytoluene (BHT)

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.172-176
    • /
    • 2007
  • Butylated hydroxytoluene (BHT) is widely used antioxidant food additives. It has been extensively studied for potential toxicities. BHT appears adverse effects in liver and thyroid. In this study, we evaluated the genetic toxicity of BHT with more advanced methods, in vitro mouse lymphoma assay $tk^{+/-}$ gene assay (MLA) and in vivo mouse supravital micronucleus (MN) assay. BHT did not appear the significantly results in the absence and presence of metabolic activation system with MLA. Also, in vivo testing of BHT yielded negative results with supravital MN assay. These results suggest that BHT itself was not generally considered genotoxic.

Evaluation of the Genetic Toxicity of Synthetic Chemical (XVII) -In vitro Mouse Lymphoma Assay and In vitro Supravital Micronucleus Assay with 1, 2-Dichlorobenzene

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.113-118
    • /
    • 2007
  • Chlorobenzenes due to their acute toxicity and the capability of bioaccumulating are of great health and environmental concern. Especially, 1, 2-dichlorobenzene (CAS No. 95-50-1) is used for organic synthesis, dye manufacture, as a solvent and for other applications in chemical industry. Adverse effects of 1, 2-dichlorobenzene includes increases in liver and kidney weights and hepatotoxicity. In this study, we evaluated the genetic toxicity of 1, 2-dichlorobenzene with more advanced methods, in vitro mouse lymphoma assay $tk^{+/-}$ gene assay (MLA) and in vitro mouse supravital micronucleus (MN) assay. 1, 2-Dichlorobenzene appeared the significantly positive results and the induction of large mutant colonies only in the presence of metabolic activation system with MLA. But in vitro testing of 1, 2-dichlorobenzene yielded negative results with supravital MN assay. These results suggest that 1, 2-dichlorobenzene may play a mutagen rather than clastogen in vitro mammalian system.

Recent Advanced Toxicological Methods for Environmental Hazardous Chemicals (환경 오염물질의 진보된 독성 평가 기법)

  • 류재천;최윤정;김연정;김형태;방형애;송윤선
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.1-12
    • /
    • 1999
  • Recently, several new methods for the detection of genetic damages in vitro and in vivo based on molecular biological techniques were introduced according to the rapid progress in toxicology combined with cellular and molecular biology. Among these methods, mouse lymphoma thymidine kanase (tk) gene forward mutation assay, single cell gel electrophoresis (comet assay) and transgenic animal and cell line model as a target gene of lac I (Big Blue) and lac Z (Muta Mouse) gene mutation are newly introduced based on molecular toxicological approaches. The mouse lymphoma tk$\^$+/-/ gene assay (MOLY) using L5178Y tk$\^$+/-/ mouse lymphoma cell line is one of the mammalian forward mutation assays, and has many advantages and more sensitive than hprt assay. The target gene of MOLY is a heterozygous tk$\^$+/-/ gene located in 11 chromosome, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. The comet assay is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakages in mammalian cells, Also, transgenic animal and cell line models, which have exogenous DNA incorporated into their genome, carry recoverable shuttle vector containing reporter genes to assess endogenous effects or alteration in specific genes related to disease process, are powerful tools to study the mechanism of mutation in vivo and in vitro, respectively. Also in vivo acridine orange supravital staining micronucleus assay by using mouse peripheral reticulocytes was introduced as an alternative of bone marrow micronucleus assay. In this respect, there was an International workshop on genotoxicity procedure (IWGTP) supported by OECD and EMS (Environmental Mutagen Society) at Washington D. C. in March 25-26, 1999. The objective of IWGTP is to harmonize the testing procedures internationally, and to extend to finalization of OECD guideline, and to the agreement of new guidelines under the International Conference of Harmonization (ICH) for these methods mentioned above. Therefore, we introduce and review the principle, detailed procedure, and application of MOLY, comet assay, transgenic mutagenesis assay and supravital staining micronucleus assay.

  • PDF

Evaluation of the Genetic Toxicity of Synthetic Chemicals (XVI) - in vitro Mouse Lymphoma Assay with 3 chemicals -

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.244-250
    • /
    • 2006
  • The detection of many synthetic chemicals used in industry that may pose a genetic hazard in our environment is of great concern at present. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of chemicals that possibly threaten the public health. In this respect, to regulate and to evaluate the chemical hazard will be important to environment and human health. The genotoxicity of 3 synthetic chemicals was evaluated in L5178Y $tk^{+/-}$ mouse lymphoma cells in vitro. 9H-carbazole (CAS No. 86-74-8) did not induce significant mutation frequencies both in the presence and absence of metabolic activation system. 1, 3-Dichloro-2-propanol (CAS No. 96-23-1) revealed a significant increase of mutation frequencies in the range of $625-373\;{\mu}g/mL$ in the absence of metabolic activation system and $157-79\;{\mu}g/mL$ in the presence of metabolic activation system. And also, fenpropathrin (CAS No. 64257-84-7) appeared the positive results only in the absence of metabolic activation system. Through the results of MLA tk assay with 3 synthetic chemicals in L5178Y cells in vitro, we may provide the important clues on the genotoxic potentials of these 3 chemicals.

In vitro and In vivo Evaluation of Genotoxicity of Stevioside and Steviol, Natural Sweetner (천연감미료 스테비오사이드와 스테비올의 생체내, 시험관내 유전독성평가)

  • 오혜영;한의식;최돈웅;김종원;손수정;엄미옥;강일현;강혁준;하광원
    • YAKHAK HOEJI
    • /
    • v.43 no.5
    • /
    • pp.614-622
    • /
    • 1999
  • The standard operation procedure of mouse lymphoma L5178Y $tk^{+/-}-3.7.2C$ gene mutation assay (MOLY) has been regarded as a sensitive in vitro mammalian cell gene mutation assay that is capable of detecting clastogens as well as mutagens. Using MOLY, one of natural sweetner, stevioside (5mg/ml) and its aglycon, steviol ($340{\;}\mu\textrm{g}/ml$) were evaluated the mutagenicity. Stevioside and steviol did not induce mutagenicity in MOLY. On the other hand, stevioside (250mg/kg, B.W.) and steviol (200mg/kg, B.W.) were also evaluated their ability to induce micronuclei in regenerating hepatocytes and bone marrow cells of ddY mice. From these results, stevioside and steviol did not induce any mutagenic effect both MOLY and in vivo micronucleus test.

  • PDF

Cell transformation of bisphenol A in Syrian hamster embryo cells and mouse embryo BalB/c 3T3 cells (Syrian hamster embryo 세포와 mouse embryo BalB/c 3T3 세포에서의 bisphenol A의 세포 형질전환 연구)

  • 김종원;한의식;박미선;엄미옥;전혜승;민수진;김인숙;정해관;심웅섭
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • To identify nongenotoxic carcinogen determined as negative by ICH guideline-recommended standard genotoxicity test battery; Ames test, chromosome aberration assay, mouse lymphoma $tk^{+/-}$ assay, in vivo micronucleus assay, we picked bisphenol A as a model compound. In this study, we applied in vitro BalB/c 3T3 cell transformation assay and Syrian hamster embryo (SHE) cell transfarmation assay. Bisphenol A was treated upto $769.2 ug/m{\ell}$ in BalB/c 3T3 cells and upto $125 ug/m{\ell}$ in SHE cells. bisphenol A didn't induced morphological transformation both with one stage treatment protocol and with two stage treatment protocol. But, treated far 48 hr, Bisphenol A induced morphological transformation significantly in SHE cells.

  • PDF

The Genotoxicity Study of Molinate, an Herbicide, in Bacterial Reversion, in vitro and in vivo Mammalian System

  • Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.3
    • /
    • pp.176-184
    • /
    • 2006
  • The controversy on genotoxicity of molinate, an herbicide, has been reported in bacterial system, and in vitro and in vivo mammalian systems. To clarify the genotoxicity of molinate, we performed bacterial gene mutation test, in vitro chromosome aberration and mouse lymphoma $tk^{+/-}$ gene assay, and in vivo micronucleus assay using bone marrow cells and peripheral reticulocytes of mice. In bacterial gene mutation assay, no mutagenicity of molinate ($12-185{\mu}g/plate$) was observed in Salmonella typhimurium TA 98, 100, 1535 and 1537 both in the absence and in the presence of S-9 metabolic activation system. The clastogenicity of molinate was observed in the presence ($102.1-408.2\;{\mu}g/mL$) of metabolic activation system in mammalian cell system using Chinese hamster lung fibroblast. However, no clastogenicity was observed in the absence ($13.6-54.3\;{\mu}g/mL$) of metabolic activation system. It is suggested that the genotoxicity of molinate was derived some metabolites by metabolic activation. Molinate was also subjected to mouse lymphoma L5178Y $tk^{+/-}$ cells using microtiter cloning technique. In the absence of S-9 mixture, mutation frequencies (MFs) were revealed $1.4-1.9{\times}10^{-4}$ with no statistical significance. However, MFs in the presence of metabolic activation system revealed $3.2-3.4{\times}10^{-4}$ with statistical significance (p<0.05). In vivo micronucleus (MN) assay using mouse bone marrow cells, molinate revealed genotoxic potential in the dose ranges of 100-398 mg/kg of molinate when administered orally. Molinate also subjected to acridine orange MN assay with mouse peripheral reticulocytes. The frequency of micronucleated reticulocytes (MNRETs) induced 48 hr after i.p. injection at a single dose of 91, 182 and 363 mg/kg of molinate was dose-dependently increased as $10.2{\pm}4.7,\;14.6{\pm}3.9\;and\;28.6{\pm}6.3\;(mean{\pm}SD\;of\;MNRETs/2,000\;reticulocytes)$ with statistical significance (p<0.05), respectively. Consequently, genotoxic potential of molinate was observed in in vitro mammalian mutagenicity systems only in the presence of metabolic activation system and in vivo MN assay using both bone marrow cells and peripheral reticulocytes in the dose ranges used in this experiment. These results suggest that metabolic activation plays a critical role to express the genotoxicity of molinate in in vitro and in vivo mammalian system.