• Title/Summary/Keyword: Mouse immature oocytes

Search Result 34, Processing Time 0.021 seconds

Ovulation Rate and Early Embryonic Development of Mouse Atretic Follicular Oocytes Induced by High-dose Gonadotropin (과량의 생식소자극호르몬 처리를 받은 생쥐 폐쇄난포의 배란율과 초기배아 발생률의 변화)

  • 임천규
    • Development and Reproduction
    • /
    • v.1 no.1
    • /
    • pp.67-77
    • /
    • 1997
  • Mammalian ovary consists of various growing stages of follicles. Ovarian follicular growth and differentiation, however, can be distinguished into recruitment, growth, selectiona nd ovulation. while only minute of the selected follicles ovulate their oocytes, all the rest follicles disappear by atresia. this atresia is an important event of which physiological mechanism must be resolved. The present study was carried out to investigate the effects of various doses of pregnant mare's serum gonadotropin (PMSG) on the oocyte quality, ovulation rate, and the early embryonic development in immature mice. Immature mice were administrated with 5, 20, or 40 IU PMSG. At every 12 hour up to 72 hour after treatment, body and ovary weights were measured. Oocytes were flushed from the oviducts under the dissecting microscope and observed under the inverted microscope. Late 2-cell embryos were collected from the mice which were superovulated by the same dosage of PMSG followed by 5 IU hCG 47 hours after PMSG-treatment. The percentage of abnormal oocytes was higher in 20 or 40 IU PMSG-treated animals than 5 IU PMSG-treated ones. Ovulation occured at 12 hours afger PMSG injection in all experimental groups. The percentage of retrieved abnormal oocytes increased in the 20 or 40 IU PMSG-treated goups but not in 5 IU PMSG-treated group. There was no significant difference in the mating rate among the groups [52.6% (10/19), 66.7% (10/15), 44.0% (11/25) : 5, 20, 40 IU group respectively] ; however, ther was a significant (p<0.01) increase of embryo retrieval rates in 5 and 20 IU-treated groups compared with that in 40 IU-treated group [89.2% (239-268), 85.5% (224/262), 40.0% (18/45)]. There was significant (p<0.01) increase of embryo development rates in 5 IU-treated group compared with that in 20 and 40 IU-treated group [231/239(96.7), 179/224(79.9), 77.8(14/18)]. In conclusion, higher doses of PMSG injection increased the occurrence of abnormal oocytes ovulation in immature mice. The most of oocytes collected from 5 or 20 IU-PMSG-treated group has fertilizabioity. But in mice injected iwth higher doses of PMSG, their oocytes exhibit less fertilizability and, even fertilized, all oocytes are not fully capable of development.

  • PDF

Redistribution of Intracellular $Ca^{2+}$ Stores during Mouse OOcyte Maturation (생쥐 난자 성숙시 일어나는 칼슘 저장고의 분포 변화에 관한 연구)

  • 최수완
    • Development and Reproduction
    • /
    • v.1 no.1
    • /
    • pp.45-56
    • /
    • 1997
  • Befor fertilization, mammalian oocytes undergo meiotic maturation, which consists of nuclear and cytoplasmic differentiation. In this study, changes of $Ca^{2+}$ stores in mouse oocytes were examined during meiotic maturation and the role of $Ca^{2+}$ in the regulation of the maturation was investigated by using monoclonal antibodies against smooth endoplasmic reticulum $Ca^{2+}$-ATPase(SERCA-ATPase) and calreticulin. Observations were made under epifluorescence microscope and/or confocal laser scanning microscope. In immature oocytes which did not resume meiotic maturation, SERCA-ATPases were mostly localized in the vicinity of the germinal vesicle and calreticulins were distributed evenly throughout the cytoplasm. In mature oocytes, SERCA-ATPases were observed throughout the cytoplasm, butwere absent from the nuclear region. In contrast, calreticulins were localized mostl in the cortex of the oocyte and were absent from the cytoplasm. However, bright fluoresence stainings were wbserved in the perimeiotic spindle region of mature oocyte when labeled with antibodies against calreticulin. These results indicate that mouse oocytes undergo distinct rearrangement of the localization of $Ca^{2+}$-ATPases and calreticulins during meiotic maturation. Thus it can be suggested that redistribution of the $Ca^{2+}$ stores, as revealed by differential fluorescence stainings, is deeply involved in the regulatory mechanism of mammalian oocyte maturation.

  • PDF

Effects of BMI-1026, A Potent CDK Inhibitor, on Murine Oocyte Maturation and Metaphase II Arrest

  • Choi, Tae-Saeng
    • Reproductive and Developmental Biology
    • /
    • v.31 no.2
    • /
    • pp.71-76
    • /
    • 2007
  • Previous studies have shown that BMI-1026 is a potent inhibitor of the cyclin-dependent kinases (cdk). In cell culture, the compound also arrests G2/M strongly and G1/S and S weakly. Two key kinases, cdk1 (p34cdc2 kinase) and mitogen-activated protein (MAP) kinase (erk1 and 2), perform crucial roles during oocyte maturation and, later, metaphase II (MII) arrest. In mammalian oocytes, both kinases are activated gradually around the time of germinal vesicle breakdown (GVBD) and maintain high activity in eggs arrested at metaphase II. In this study, we examined the effects of BMI-1026 on GVBD and MII arrest in mouse oocytes. BMI-1026 inhibited GVBD of immature oocytes and activated MII-arrested oocytes in a concentration-dependent manner, with more than 90% of oocytes exhibiting GVBD inhibition and MII activation at 100 nM This is approximately 500$\sim$1,000 times more potent than the activity reported for the cdk inhibitors roscovitine (${\sim}50{\mu}M$) and butyrolactone (${\sim}100{\mu}M$). Based on the results of previous in vitro kinase assays, we expected BMI-1026 to inhibit only cdk1 activation in oocytes and eggs, not MAP kinase. However, in our cell-based system, it inhibited the activity of both kinases. We also found that the effect of BMI-1026 is reversible. Our results suggest that BMI-1026 inhibits GVBD and activates MII-arrested oocytes efficiently and reversibly and that it also inhibits both cdk1/histone HI kinase and MAP kinase in mouse oocytes.

Expression of $interferon$ $regulatory$ factor-1 in the mouse cumulus-oocyte complex is negatively related with oocyte maturation

  • Kim, Yun-Sun;Kim, Eun-Young;Moon, Ji-Sook;Yoon, Tae-Ki;Lee, Woo-Sik;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.38 no.4
    • /
    • pp.193-202
    • /
    • 2011
  • Objective: We found previously that $interferon$ $regulatory$ factor ($Irf$)-1 is a germinal vesicle (GV)-selective gene that highly expressed in GV as compared to metaphase II oocytes. To our knowledge, the function of $Irf-1$ in oocytes has yet to be examined. The present study was conducted to determine the relationship between retinoic acid (RA) and RA-mediated expression of $Irf-1$ and the mouse oocyte maturation. Methods: Immature cumulus-oocyte-complexes (COCs) were collected from 17-day-old female mice and cultured $in$ $vitro$ for 16 hours in the presence of varying concentrations of RA (0-10 ${\mu}M$). Rate of oocyte maturation and activation was measured. Gene expression was measured by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and cytokine secretion in the medium was measured by Bio-Plex analysis. Apoptosis was analyzed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Results: The rates of oocyte maturation to metaphase II and oocyte activation increased significantly with RA treatment (10 nM-1 ${\mu}M$). With 100 nM RA treatment, lowest level of $Irf-1$ mRNA and cumulus cell's apoptosis was found. Among 23 cytokines measured by Bio-Plex system, the substantial changes in secretion of tumor necrosis factor-${\alpha}$, macrophage inflammatory protein-$1{\beta}$, eotaxin and interleukin-12 (p40) from COCs in response to RA were detected. Conclusion: We concluded that the maturation of oocytes and $Irf-1$ expression are negatively correlated, and RA enhances the developmental competence of mouse immature oocytes $in$ $vitro$ by suppressing apoptosis of cumulus cells. Using a mouse model, results of the present study provide insights into improved culture conditions for $in$ $vitro$ oocyte maturation and relevant cytokine production and secretion in assisted reproductive technology.

The Effect of Cryopreservation Condition on Developmental Rate of Pronuclear Stage Embryos and Vitrification of Mouse Oocytes (생쥐 난자의 유리화 동결과 전핵기 배아의 동결 조건이 배아의 발달에 미치는 영향)

  • Kim, Ji-Chul;Park, Sung-Baek;Nam, Yoon-Sung;Seo, Byoung-Boo;Kim, Jae-Myeoung;Song, Hai-Bum
    • Journal of Embryo Transfer
    • /
    • v.26 no.3
    • /
    • pp.201-207
    • /
    • 2011
  • The present study was performed to investigate the survival and subsequent embryonic developmental rate of immature and mature oocytes after vitrification and pronuclear stage embryos after slow-freezing and vitrification. We have also tried to examine the dependency of concentrations (7.5, 15%) and exposure time (5, 10, 20 min) of ED cryoprotectant on developmental rate of pronuclear stage embryos. The developmental rates of 2-ce1l and blastocyst embryos at mature oocytes were significantly (p<0.05) higher than immature oocytes. After slow freezing, vitrification and thawing of pronuclear stage embryo, the survival and developmental rates of blastocysts and hatched blastocysts were significantly (p<0.05) higher after vitrification than after slow-freezing. On contrary, the developmental rates of 2-cell embryos were significantly (p<0.05) higher after slow freezing than after vitrification. The cryopreservation methods of pronuclear stage embryos vitrified by exposed to 7.5% ED solution for 5 minutes was significantly (p<0.05) higher than other experimental group. The results of our study suggest 1hat the developmental rates of mature oocytes have been more successful than immature oocytes during vitrification. Vitrification was more efficient than slow freezing in case of pronuclear stage embryos. The effective cryopreservation method of pronuclear stage embryos was vitrified by exposed to 7.5% ED solution for 5 minutes.

Effects of Purine on Meiotic Maturation of Mouse Immature Oocytes II. Effects of Purine on Extrusion Rates of 1st pb and Viability of Immature Oocytes (Purine이 생쥐 미성숙난자의 핵성숙에 미치는 영향 II. 미성숙 난자의 제 1극체 방출과 생존성에 미치는 Purine의 효과)

  • 지희준;황영희;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.2
    • /
    • pp.85-92
    • /
    • 1993
  • In the previous study, we observed that Purine has a time dependent effect in maintaining the oocytes in meiotic arrest, and human fetal cord serum(HFCS) and human mature follicular fluid(HMFF) reverse the GVBD suppressed by purines. And it was reported that purine has a harmful effect on the development of oocytes or embryos, when they were cultured for a long time, in vitro. Therefore this study was performed to investigate the effects of purine on extrusion rates of 1st pb and viability of oocytes cultured for a long time, in vitro. Immature oocytes(GV stage) were collected from ovaries of 25~28 day old ICR mice at 48 hrs after PMSG injection. Cumulus-enclosed and denuded oocytes collected were assigned randomly to one of several culture conditions. Some of the oocytes were cultured in 4mM hypoxanthine for 24hr, and the extrusion rates of 1st pb and viability of the oocytes were assessed at every 12 hrs. In the viability, the oocytes showed granulation, pigmentation of cytoplasm or lysis of 1st pb extruded were regarded as degenerating oocytes. Also some of the oocytes were cultured in hypoxanthine for 12 hrs then the resulting oocytes were transferred to hypoxanthine-free medium and cultured for 12 hrs to determine whether the inhibitory effect of hypoxanthine on the 1st pb extrusion was reversible. The rest of the oocytes were cultured in medium containing hypoxanthine and adenosine for 18 hrs to compare the 1st pb extrusion be attendant upon hte concentration of HFCS or HMFF supplemented. Hypoxanthine suppressed the extrusion of 1st pb and viability of the oocytes significantly, when they were cultured for more than 12 hrs and the harmful effect of hypoxanthine was showed in denuded oocytes, prominently. The suppressive effect of hypoxanthine was reversed by just removal of the hypoxanthine from the cultrue medium. Also there was no difference in reverse the pb extrusion rate suppressed between HFCS and HMFF. The extrusion rate of 1st pb in medium containing adenosine and hypoxanthine was increased in line with the concentration of HFCS or HMFF supplemented. Hypoxanthine suppressed the extrusion of 1st pb and viability of the oocytes significantly, when they were cultured for more than 12 hrs and the harmful effect of hypoxanthine was showed in denuded oocytes, prominetly. The suppressive effect of hypoxanthine was reversed by just removal of the hypoxanthine fromthe culture medium. Also there was no difference in reverse the pb extrusion rate suppressed between HFCS and HMFF. The extrusion rate of 1st pb in medium containing adenosine and hypoxanthine was increased in line with the concentration of HFCS or HMFF supplemented.

  • PDF

The Effect of Uterine Environment during Peri-implantation Period on the Ultrastructure of Zona Pellucida in Mouse Oocytes and Embryos (착상기간의 자궁내 환경이 생쥐 난자 및 배아의 투명대 미세구조에 미치는 영향)

  • Han, Sung-Won;Chung, Ho-Sam;Kang, Hee-Gyoo;Lee, Ho-Joon;Gye, Myung-Chan;Kim, Sung-Rye;Kim, Moon-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.345-353
    • /
    • 1999
  • In the studies on the hatching mechanisms in mammals, many investigators focused on the embryonic intrinsic factor(s) in in vitro culture, but the uterine environment as the extrinsic factor(s) is thought to play an important role in hatching mechanism. Therefore, to evaluate the effect of uterine environment on the hatching event in vivo, the immature(GV) and ovulated(MII) oocytes, and the late 2-cell embryos of mouse were transferred to pseudopregnant foster mother's uterus during peri-implantation period. So it was verified whether there would happen hatching by only uterine environment independently on embryonic stage. The ultrastructural changes of the zona surface of transferred group were compared with those 01 in vivo and vitro group by SEM. 36 hrs after transfer, the immature and ovulated oocytes almost degenerated, and the late 2-cell embryos developed to various embryonic stages. However, the embryos which didn't develop to blastula stage did not hatch. The ultrastructural network of ZP in transferred group seemed to be smoothed uniformly, which was different from in vitro group. In conclusion, it is suggested that the uterine environment during peri-implantation period enhances the embryo hatching by provoking the structural change of ZP.

  • PDF

Guanosine Regulates Germinal Vesicle Breakdown (GVBD) in Mouse Oocytes

  • Cheon Yong-Pil
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.267-273
    • /
    • 2004
  • Maturation of oocytes is maintained by complex procedures along with follicular genesis and is a critical step for embryonic development. Purine known as an oocyte maturation regulator is present in follicular fluid. In this study, the roles of guanosine as a strong inhibitor of GVBD and a modulator of cyclic GMP concentration in ooyctes were revealed. Denuded immature oocytes were treated with guanosine, and the maturation rates and cGMP concentration of oocytes were measured. GVBD was blocked in a concentration dependent manner by guanosine, but this effect was reversible. However, GVBD was lagged yet not significant by adenosine. Both guanosine and adenosine modified cGMP concentration in oocytes. The characteristic of the guanosine-treated oocyte was significantly higher cGMP compared with the adenosine-treated oocyes at initial time of the maturation. Based these results, guanosine may be a strong and reversible GVBD inhibitor. Although the precise mechanism of guanosine presently is unclear, the results suggest that guanosine may lead the accumulation of cGMP in oocyte cytoplasm, which in turn suppresses GVBD.

Effect of Purine on Meiotic Maturation of Mouse Immature Oocytes I. Actions of Purine, Human Fetal Cord Seruma and Human Mature Follicular Fluid in Germinal Vesicle Break Down (Purine이 생쥐 미성숙난자의 핵성숙에 미치는 영향 I. 난핵포붕괴(GVBD)에 대한 Purine, 인간태아제대혈청 및 인간성숙난포액의 작용)

  • 지희준;고정재;이훈택;정길생
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.2
    • /
    • pp.75-83
    • /
    • 1993
  • Purine has been identified in the preparation of follicular fluid and shown an activity in maintaining oocyte meiotic arrest. Therefore this study was performed to examine the inhibitory effect of purine on germinal vesicle break down(GVBD) in the presence and absence of human fetal cord serum(HFCS) or human mature follicular fluid(HMFF), as a protein source, in vitro culture. Immature oocytes(GV stage) were collected from ovaries of 21∼28 days old ICR mice by puncturing the antral follicles with a fine needle, at 48 hrs after PMSG injection. Some of the oocytes were denuded by drawing the cumulus-enclosed(complex) oocytes in and out of a pasteur pipet. Complex oocytes and denuded oocytes were cultured 3 hrs. in T6 media containing 0.75mM adenosine or/and 4mM hypoxanthine, with HFCS or HMFF. Their GVBD rates were observed at every 1 hr. during the culture time. Both adenosine and hypoxanthine have shown a time-dependent inhibitory effect on GVBD in complex and denuded oocytes and the inhibitory effect was maximized in culture medium containing hypoxanthine and adenosine. HFCS and HMFF increased the GVBD rates in the presence of the purines, thus HFCS and HMFF may contain a factor that could reverse the inhibitory effect of purines. Also complex oocytes were more sensitive to not only the inhibitory effect of purines but the promoting action of HMFF on GVBD than denuded oocytes. Therefore it was reconfirmed that granulosa cells play an important part in meiotic arrest and resumption.

  • PDF

Immature Oocyte-Specific Zap70 and Its Functional Analysis in Regulating Oocyte Maturation

  • Kim, Yun-Na;Kim, Eun-Ju;Kim, Eun-Young;Lee, Hyun-Seo;Kim, Kyeoung-Hwa;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.145-153
    • /
    • 2009
  • Previously, we obtained the list of genes differentially expressed between GV and MII oocytes. Out of the list, we focused on functional analysis of Zap70 in the present study, because it has been known to be expressed only in immune cells. This is the first report about the expression and its function of Zap70 in the oocytes. Synthetic 475 bp Zap70 dsRNA was microinjected into the GV oocytes, and the oocytes were cultured in vitro. In addition to maturation rates, meiotic spindle and chromosome rearrangements, and changes in expression levels of transcripts of three kinases, Erk1/2, JNK, and p38, were determined. Zap70 is highly expressed in immature GV oocytes, and gradually decreased as oocyte matured. When dsRNA of Zap70 was injected into the GV oocytes, Zap70 mRNA specifically and completely decreased by 2 hr and its protein expression also decreased significantly. Absence of Zap70 resulted in maturation inhibition at meiosis I (57%) with abnormalities in meiotic spindle formation and chromosome rearrangement. Concurrently, mRNA expression of Erk2, JNK, and p38, were affected by Zap70 RNAi. Therefore, we concluded that Zap70 is involved in MI-MII transition by affecting expression of MAP kinases.

  • PDF