• Title/Summary/Keyword: Mouse Embryo Development

Search Result 279, Processing Time 0.034 seconds

Expression and Localization of ATF4 Gene on Oxidative Stress in Preimplantation Mouse Embryo (생쥐 착상전 배아에서 산화적 스트레스에 의한 ATF4 유전자의 발현과 존재 부위)

  • Na, Won-Heum;Kang, Han-Seung;Eo, Jin-Won;Gye, Myung-Chan;Kim, Moon-Kyoo
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • Reactive oxygen species(ROS) generated in cellular metabolism have an effect on cell maturation and development. In human reproductive tract, oxidative injury by ROS may induce female infertility. Also, oxidative injury may be responsible for developmental retardation and arrest of mammalian preimplantation embryos. Activating transcription factor 4(ATF4) is a member of the cyclic-AMP response element-binding(CREB) familiy of basic region- leucine zipper(bZip). ATF4 is known to regulate stress response to protect cell from various stress factors and inducer of apoptisis. The purpose of this study was to investigate whether ATF4 is involved in the defensive mechanism in oxidative stress condition during the development of mouse preimplantation embryos. To verify the expression of ATF4 in oxidative stress condition, 2-cell stage embryos were cultured in HTF media containing 0.1mM, 0.5mM or 1mM hydrogen peroxide($H_2O_2$) for 1hr(2-cell), 8hr(4-cell), 17hr(8-cell), 24hr(morula), 48hr(early blastocyst) or 64hr(late blastocyst). The developmental rate decreased in the 0.1mM $H_2O_2$ treated group compared with control group. In embryos treated with 0.5mM and 1mM $H_2O_2$ showed 2-cell block. As a results of the semi-quantitative RT-PCR analysis of SOD1, ATF4 and Bax gene expression, SOD1, ATF4 and Bax genes were increased in 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. In 2-cell embryos, expression of SOD1, ATF4 and Bax genes were notably increased in 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. Immunofluorescence analysis showed that ATF4 protein was localized at the cytoplasm of preimplantation embryos. The increase in ATF4 immunoreactivety was observed in the 0.1mM, 0.5mM, 1mM $H_2O_2$ treated groups compared with control group. It suggests that oxidative stress by $H_2O_2$ induces expression of ATF4 and may be involved in protection mechanism in preimplantation embryos from oxidative injury.

  • PDF

Spatio-Temporal Expression Pattern of Grp 78, a Putative Hoxc8 Downstream Target Gene, During Murine Embryogenesis

  • Kang Jin Joo;Kwon Yunjeong;Lee Eun Young;Park Hyoung Woo;Yang Hye-Won;Kim Myoung Hee
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.311-318
    • /
    • 2005
  • Grp78, discovered as one of the putative target genes of Hoxc8, is a highly conserved stress protein and functions as a molecular chaperone in the endoplasmic reticulum (ER). In order to see the stage-specific expression pattern of Grp78 during development, mouse embryos from day 7.5 to 17.5 p.c. were isolated, and RT-PCR as well as in situ hybridization was performed. When RT-PCR was performed using Grp78 specific primers, periodic expression pattern was detected. And also a region-specific expression pattern was detected with a strong expression in the trunk part of day 11.5 p.c. embryo, like that of Hoxc8. When in situ hybridization was performed, Grp78 was revealed to be expressed in the endoderm, somite, neuroepithelium cells of neural tube in early embryos. In the case of late embryos, Grp78 expression was detected in the liver, segmental bronchus within cranial lobe of lung, ossification center within the cartilage primordium of rib and vertebra, submandibular gland, as well as metanephros. These expression patterns are very much similar to those of Hoxc8. Since Hoxc8 has been reported to regulate apoptosis during organogenesis, it might be possible that the apoptotic function could have been conveyed through the expression of Grp78, implying that the Grp78 is one of the Hoxc8 downstream target genes.

  • PDF

Interspecies Nuclear Transfer using Bovine Oocytes Cytoplasm and Somatic Cell Nuclei from Bovine, Porcine, Mouse and Human (소, 돼지, 생쥐, 사람의 체세포와 소 난자를 이용한 이종간 핵 이식)

  • 박세영;김은영;이영재;윤지연;길광수;김선균;이창현;정길생;박세필
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.3
    • /
    • pp.235-243
    • /
    • 2002
  • This study was designed to examine the ability of the bovine (MII) oocytes cytoplasm to support several mitotic cell cycles under the direction of differentiated somatic cell nuclei of bovine, porcine, mouse and human. Bovine GV oocytes were matured in TCM-199 supplemented with 10% FBS. At 20h after IVM, recipient oocytes were stained with 5 $\mu\textrm{g}$/$m\ell$ Hoechst and their 1st polar body (PB) and MII plate were removed by enucleation micropipette under UV filter. Ear skin samples were obtained by biopsy from an adult bovine, porcine, mouse and human and cultured in 10% FBS added DMEM. Individual fibroblast was anlaysed chromosome number to confirm the specificity of species. Nuclear transferred (NT) units were produced by electrofusion of enucleated bovine oocytes with individual fibroblast. The reconstructed embryos were activated in 5 $\mu$M ionomycin for 5 min followed by 1.9 mM 6-dimethylaminopurine (DMAP) in CR1aa for 3 h. And cleaved NT embryos were cultured in CR1aa medium containing 10% FBS on monolayer of bovine cumulus cell for 8 days. Also NT embryo of 4~8 cell stage was analysed chromosome number to confirm the origin of nuclear transferred somatic cell. The rates of fusion between bovine recipient oocytes and bovine, porcine, mouse and human somatic cells were 70.2%, 70.2%, 72.4% and 63.0%, respectively. Also, their cleavage rates were 60.6%, 63.7%, 54.1% and 62.7%, respectively, there were no differences among them. in vitro development rates into morula and blastocyst were 17.5% and 4.3% in NT embryos from bovine and human fibroblasts, respectively. But NT embryos from porcine and mouse fibroblasts were blocked at 16~32-cell stage. The chromosome number in NT embryos from individual fibroblast was the same as chromosome number of individual species. These results show that bovine MII oocytes cytoplasm has the ability to support several mitotic cell cycles directed by newly introduced nuclear DNA.

Expression of p63 during Early Craniofacial Development of the Mouse Embryo (생쥐의 초기 두개악안면 발생 중 p63의 발현 양상)

  • Akihiro, Hosoya;Lee, Jong-Min;Kim, Ji-Youn;Jung, Han-Sung;Choi, Sung-Won
    • Development and Reproduction
    • /
    • v.13 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • p63 has been demonstrated to localize in stem cells and precursor cells of various epithelial tissues previously, but the localization of p63 throughout tooth formation, particularly during the enamel and root formation stages, remains to be adequately characterized. Therefore, in this study, we have demonstrated, via immunohistochemical methods, that p63 is ubiquitously expressed in the dental epithelium during tooth development. p63 was detected in the basal and suprabasal layers of the epithelia, including the skin, hair follicles, oral mucosa, and submandibular ducts. However, in the tooth region, all cells of the dental lamina, enamel organ, Hertwig's epithelial root sheath (HERS), and epithelial cell rests of Malassez (ERM) evidenced immunoreactivity for p63. These results indicate that p63 may perform different roles, other than stem cell maintenance, in tooth development.

  • PDF

Effects of Protein Sources and Co-culture on In Vitro Culture of IVF-derived Porcine Embryos (단백질 공급원 및 체세포와의 공배양이 돼지 체외수정란의 체외발달에 미치는 영향)

  • 한선경;구덕본;이규승;황윤식;김정익;이경광;한용만
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.3
    • /
    • pp.289-297
    • /
    • 2000
  • This study was conducted to investigate whether various protein sources and co-culture affect in vitro development of porcine zygotes derived from In vitro maturation/fertilization (IVM/IVF). These results obtained in these experiments are summarized as follows 1. When porcine oocytes matured and fertilized In vitro were cultured in NCSU 23 medium supplemented with various BSA concentrations (0.4, 0.8 and 3.2%), In vitro developmental rates of porcine zygotes to blastocyst stage were 22.9, 18.4 and 14.6%, respectively. High concentration of BSA (3.2%) showed a smaller nuclei number (36.1$\pm$11.8) of blastocysts than 0.4 and 0.8% BSA groups (53.2$\pm$27.4 and 61.2$\pm$22.5, respectively) (P<0.05). This result indicates that high concentration of BSA is detrimental on preimplantation development of IVF-derived porcine embryos. 2. No differences were detected in the developmental rate and mean nuclei number of porcine embryos between 10 and 20% FBS concentrations in culture medium. 3. IVF-derived porcine embryos co-cultured with mouse or porcine embryonic fibroblast cells showed a lower development to the blastocyst stage than those without co-culture system. Consequently, the present study suggests that high concentration of BSA as a protein source in culture medium suppresses development potential of porcine embryos produced In vitro. In addition, co-culture with somatic cells is not effective on in vitro development of IVF-derived porcine embryos to blastocyst stage.

  • PDF

GRIM-19 Ameliorates Multiple Sclerosis in a Mouse Model of Experimental Autoimmune Encephalomyelitis with Reciprocal Regulation of IFNγ/Th1 and IL-17A/Th17 Cells

  • Jeonghyeon Moon;Seung Hoon Lee;Seon-yeong Lee;Jaeyoon Ryu;Jooyeon Jhun;JeongWon Choi;Gyoung Nyun Kim;Sangho Roh;Sung-Hwan Park;Mi-La Cho
    • IMMUNE NETWORK
    • /
    • v.20 no.5
    • /
    • pp.40.1-40.15
    • /
    • 2020
  • The protein encoded by the Gene Associated with Retinoid-Interferon-Induced Mortality-19 (GRIM-19) is located in the mitochondrial inner membrane and is homologous to the NADH dehydrogenase 1-alpha subcomplex subunit 13 of the electron transport chain. Multiple sclerosis (MS) is a demyelinating disease that damages the brain and spinal cord. Although both the cause and mechanism of MS progression remain unclear, it is accepted that an immune disorder is involved. We explored whether GRIM-19 ameliorated MS by increasing the levels of inflammatory cytokines and immune cells; we used a mouse model of experimental autoimmune encephalomyelitis (EAE) to this end. Six-to-eight-week-old male C57BL/6, IFNγ-knockout (KO), and GRIM-19 transgenic mice were used; EAE was induced in all strains. A GRIM-19 overexpression vector (GRIM19 OVN) was electrophoretically injected intravenously. The levels of Th1 and Th17 cells were measured via flow cytometry, immunofluorescence, and immunohistochemical analysis. IL-17A and IFNγ expression levels were assessed via ELISA and quantitative PCR. IL-17A expression decreased and IFNγ expression increased in EAE mice that received injections of the GRIM-19 OVN. GRIM19 transgenic mice expressed more IFNγ than did wild-type mice; this inhibited EAE development. However, the effect of GRIM-19 overexpression on the EAE of IFNγ-KO mice did not differ from that of the empty vector. GRIM-19 expression was therapeutic for EAE mice, elevating the IFNγ level. GRIM-19 regulated the Th17/Treg cell balance.

Viabilities of Biopsied Mouse Embryos after Ultrarapid Refreezing and Thawing (미세조작된 생쥐수정란의 초급속 재동결융해 후 생존성)

  • 신상태;임준호;강만종;한용만;이경광
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.2
    • /
    • pp.207-214
    • /
    • 1996
  • To examine the developmental capacity of manipulated embryos after ultrarapid refreezing and thawing, mouse embryos were biopsied at 4-cell stage, frozen twice at 4-cell and morula stages, respectively, and then transferred to rec-ipients. Single blastomeres were biopsied from 4-cell embryos by a modified aspiration method. Biopsied 4-cell embryos were equilibrated into freezing medium at room temperature for 2.5 min, loaded into 40 $\mu$I of freezing medium in 0.25 ml plastic straw and then directly immersed into liqiud nitrogen. Freezing medium for 4-cell embryos consisted of 4.0 M ethylene glycol and O.25 M sucrose in dPBS supplemented with 6 mg/lm BSA. Morulae were frozen into freezing medium containing 5.0 M glycerol instead of ethylene glycol. Thawing was conducted by agitating each straw in 3TC water for 20 sec. The c content of each straw was expelled into 0.5 ml of dilution medium, which consisted of 0.25 M sucrose and 3 mg/ml BSA in dPBS. The thawed embryos were rehydrated in dilution medium for 10 min, washed 3 times with dPBS and then cultured in M16 medium at 37$^{\circ}C$, 5% CO$_2$ in air. Blastocysts that developed from frozen or refrozne biopsied embryos were transferred to recipients on Day 3 of pseudopregnancy, respectively. In vitro and in vivo developmental rates of the biopsied and intact 4~cell embryos after freezing and thawing were 78 (10l/130) and 25% (10/40), and 91 (114/125) and 30% (12/40), respectively. Although the rates of in vitro development of biopsied and intact embryos to blastocyst stage were significantly different after freezing and thawing (P

  • PDF

In Vitro/In Vivo Development after Thawing of Vitrified Mouse Blastocysts by Culture Condition and Embryo Transfer Method (초자화 동결된 생쥐 배반포기배의 융해 후 배양조건과 수정란 이식방법에 따른 체외/체내발달)

  • Kim, M.K.;Kim, E.Y.;Yi, B.K.;Yoon, S.H.;Park, S.P.;Chung, K.S.;Lim, J.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.3
    • /
    • pp.347-353
    • /
    • 1997
  • This study was to test whether in vitro/in vivo survival of vitrified mouse blastocysts was influenced by culture conditions and ET method. Mouse blastocysts were obtained from in vitro fertilization and cultured for 4 days in M16 medium, and they were vitrified in EFS40 which contained 40% ethlyene glycol, 18% Ficoll and 0.5 mol sucrose in PBS. In experiment I, in vitro and in vivo survival rate of these embryos were evaluated in different culture condition after thawing. When thawed embryos were cultured in M16 medium as a control, m-CR1 medium contained 20 amino acids (2% BME amino acis and 1% MEM non-essential amino acids solution) and 4 mg/ml BSA and cumulus monolayer cell co-cultured condition in mCR1 medium (10% FBS), their in vitro survival at 24 hr after thawing was not affected by culture condition (75.6, 83.1, 82.4%). However, in vivo survival rates of implantation in m-CR1 medium (80.4%) were significantly higher than those of M16 medium (51.2%), co-culture (57.1%) condition, although there was no difference in live fetuses rates on day 15 gestation (39.0, 49.0, 38.1%). In experiment II, the in vivo development potential of embryos by ET methods was examined. When blastocysts were transferred to the day 2, 3 pseudopregnant recipient without culture soon after thawing, no pregnant recipient was obtained on the day 2 pseudopregnancy, and 50% of pregnancy rates and 15.4% of live fetus rates were obtained on the day 3 pseudopregnant recipients. These results were significantly lower than those of transferred group (day 3 pseudopregnant recipients) after culture for 16 hr post thawing (73.5, 57.1%) (p<0.05). In experiment III, to elevate usability of delayed embryos in vitro/in vivo survival of vitrified embryos (day 4 early, day 5 early and expanding blastocyst) were examined. in vivo survival rates (live fetus, total implantation) were higher in day 4 early blastocysts (33.3, 66.7%) than in day 5 expanding blastocysts (29.0, 38.7%), although the highest in vitro survival rates were obtained in the day 5 expanding brastocysts (78.3%). Therefore, these results suggest that the in vitro/in vivo survival rates of vitrified embryos could be improve by the culture condition and ET method and that the in vivo development rates of delayed embryos were decreased with longer culture duration in vitro. It means that more effective cryopreservation was obtained in day 4 early blastocysts than in day 5 expanding blastocysts.

  • PDF

Effect of Cryoprotectant Kinds and Cell Stages on the Viability of Mouse Embryos Cryopreserved by OPP Vitrification (동결보호제의 종류 및 배발달단계가 OPP Vitrification 동결보존시 생쥐수정란의 생존성에 미치는 영향)

  • 공일근;조성균;조성근
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.1
    • /
    • pp.85-92
    • /
    • 1999
  • This study was designed to determine effect of cryoprotectant kinds and cell stages on OPP vitrification method in mouse embryos. The freezing speed, cryoprotectants and cell stage could affect of embryo viability following various vitrification methods. The vitrification solution used were consisting of 40% (v/v) ethylene glycol, 18% (w/v) Ficoll, 0.3 M sucrose solution in holding medium (D-PBS supplemented with 5% FCS: HM) (EFS) or 16.5% ethylene glycol , 16.5% dimethyl sulfoxide, 0.5 M sucrose in HM (EDS). The embryos were collected from oviduct at 18 h after hCG injection and then washed and cultured in mHTF medium until use. In experiment 1, the blastocysts were vitrified by OPP straw to determine the optimal vitrification solution of EFS or EDS. The post-thaw survival rates at re-expanded stage rates were significantly different between EFS and EDS (95.0 vs 100%), but at hatching stage was not different between EFS and EDS (90.0 vs 95.0%). respectively. In experiment 2, zygotes, 2-, 4-cell, morula and blastocysts were vitrified by OPP method to determine the acceptable of early stage embryos. The development rates to expanded blastocyst in zygote (70.0%) were significantly lower rather than those in 2-, 4- 8-cell, compacted morula or blastocyst (89.7, 90.0, 92.8, 97.6 or 97.5%), respectively. However, the cell number of post-thaw developed to expanded blastocyst in blastocyst and control blastocyst stage (39.6$\pm$2.81, 35.7$\pm$2.98) were significanty higher than those in zygote, 2-, 4-, 8-cell, compacted morula (29.8$\pm$3.21, 31.3$\pm$3.83, 29.3$\pm$3.58, 28.9$\pm$3.21 or 30.8$\pm$2.93). In experiment 3, the zygotes were exposed in VSl for 1, 2, and 3 min to the optimal exposed time. The cleavage rates (91.6, 88.5, 88.9%) and develop mental rates to blastocyst (83.3, 74.3 and 69.4%) depends on the exposed time in VSl were not significantly different among 1, 2, or 3 min, respectively. The cell number also were not significantly different among exposed time in VS1. respectively. These results indicate that OPP method could be useful for vitrification either EFS or EDS vitrification solution. The post-thaw survival rates at zygote were significantly lower than those at 2-, 4-, 8-cell, morula or blastocyst, respectively. The zygote stage were more sensitive rather than late stage embryos. The exposing time in VS1 for 1 min was better than that for 2 or 3 min, even it was not significantly different. The OPP vitrification method could be useful of mouse embryos either with EFS or EDS vitrification solution.

  • PDF

Derivation of Mouse ES Cells from Isolated Blastomeres in Culture Media Supplemented with LIF (LIF를 첨가한 배양액을 이용한 할구 유래 생쥐 배아줄기세포주의 확립)

  • Cho, Jae-Won;Lim, Chun-Kyu;Ko, Duck-Sung;Kang, Hee-Jung;Jun, Jin-Hyun
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.77-86
    • /
    • 2008
  • This study was carried out to investigate the effect of leukemia inhibitory factor (LIF) on the derivation of mouse ES cells from isolated blastomeres. Two-cell stage mouse embryos were obtained from superovulated BDF1 female mice. Collected embryos were cultured to blastocyst stage in culture medium supplemented with 0, 1,000, 2,500 or 5,000 U/mL of LIF. Cultured blastocysts were examined by counting the number of cells in the inner cell mass (ICM) and trophectoderm (TE) using differential staining method. When 2-cell embryos were cultured with 2,500 U/ml of LIF, the cell numbers of ICM significantly increased in comparing with those of the control($21.0{\pm}4.0$ vs. $15.9{\pm}5.0$, P<0.01) and 1,000 U/mL of LIF-containing group ($21.0{\pm}4.0$ vs. $16.6{\pm}4.9$, P<0.05). We used an ES cell establishment medium with 20% Knockout Serum Replacement and 0.01 mg/mL ACTH instead of fetal bovine serum. Establishing efficacy of ES cell lines were the highest in 2,500 U/mL of LIF-containing group as 36.7% (11/30). This culture medium was applied to the culture of isolated blastomeres and to derivate ES cell lines. Three ES cell lines (21.4%) from isolated blastomeres of 2-cell stage embryos were established. In further experiments, we could establish one ES cell line (4.0%) from single blastomere of 4-cell stage embryo. The subcultured ES cells and their embryoid bodies were characterized by analyzing gene expression for undifferentiation and differentiation marker gene using immunocytochemistry and RT-PCR. In conclusion, LIF supplementation in culture medium could increase the cell number in ICM of blastocysts and support derivation of ES cell lines from isolated blastomeres.

  • PDF